Intégrale de $$$\frac{\sin^{2}{\left(2 \right)}}{x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sin^{2}{\left(2 \right)}}{x}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\sin^{2}{\left(2 \right)}$$$ et $$$f{\left(x \right)} = \frac{1}{x}$$$ :
$${\color{red}{\int{\frac{\sin^{2}{\left(2 \right)}}{x} d x}}} = {\color{red}{\sin^{2}{\left(2 \right)} \int{\frac{1}{x} d x}}}$$
L’intégrale de $$$\frac{1}{x}$$$ est $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ :
$$\sin^{2}{\left(2 \right)} {\color{red}{\int{\frac{1}{x} d x}}} = \sin^{2}{\left(2 \right)} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Par conséquent,
$$\int{\frac{\sin^{2}{\left(2 \right)}}{x} d x} = \ln{\left(\left|{x}\right| \right)} \sin^{2}{\left(2 \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sin^{2}{\left(2 \right)}}{x} d x} = \ln{\left(\left|{x}\right| \right)} \sin^{2}{\left(2 \right)}+C$$
Réponse
$$$\int \frac{\sin^{2}{\left(2 \right)}}{x}\, dx = \ln\left(\left|{x}\right|\right) \sin^{2}{\left(2 \right)} + C$$$A