Intégrale de $$$\sin{\left(5 x \right)} \cos^{5}{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin{\left(5 x \right)} \cos^{5}{\left(x \right)}\, dx$$$.
Solution
Appliquer la formule de réduction de puissance $$$\cos^{5}{\left(\alpha \right)} = \frac{5 \cos{\left(\alpha \right)}}{8} + \frac{5 \cos{\left(3 \alpha \right)}}{16} + \frac{\cos{\left(5 \alpha \right)}}{16}$$$ avec $$$\alpha=x$$$:
$${\color{red}{\int{\sin{\left(5 x \right)} \cos^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(10 \cos{\left(x \right)} + 5 \cos{\left(3 x \right)} + \cos{\left(5 x \right)}\right) \sin{\left(5 x \right)}}{16} d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{16}$$$ et $$$f{\left(x \right)} = \left(10 \cos{\left(x \right)} + 5 \cos{\left(3 x \right)} + \cos{\left(5 x \right)}\right) \sin{\left(5 x \right)}$$$ :
$${\color{red}{\int{\frac{\left(10 \cos{\left(x \right)} + 5 \cos{\left(3 x \right)} + \cos{\left(5 x \right)}\right) \sin{\left(5 x \right)}}{16} d x}}} = {\color{red}{\left(\frac{\int{\left(10 \cos{\left(x \right)} + 5 \cos{\left(3 x \right)} + \cos{\left(5 x \right)}\right) \sin{\left(5 x \right)} d x}}{16}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(10 \cos{\left(x \right)} + 5 \cos{\left(3 x \right)} + \cos{\left(5 x \right)}\right) \sin{\left(5 x \right)} d x}}}}{16} = \frac{{\color{red}{\int{\left(10 \sin{\left(5 x \right)} \cos{\left(x \right)} + 5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} + \sin{\left(5 x \right)} \cos{\left(5 x \right)}\right)d x}}}}{16}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(10 \sin{\left(5 x \right)} \cos{\left(x \right)} + 5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} + \sin{\left(5 x \right)} \cos{\left(5 x \right)}\right)d x}}}}{16} = \frac{{\color{red}{\left(\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x} + \int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x} + \int{\sin{\left(5 x \right)} \cos{\left(5 x \right)} d x}\right)}}}{16}$$
Soit $$$u=\sin{\left(5 x \right)}$$$.
Alors $$$du=\left(\sin{\left(5 x \right)}\right)^{\prime }dx = 5 \cos{\left(5 x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\cos{\left(5 x \right)} dx = \frac{du}{5}$$$.
Donc,
$$\frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} \cos{\left(5 x \right)} d x}}}}{16} = \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\int{\frac{u}{5} d u}}}}{16}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{5}$$$ et $$$f{\left(u \right)} = u$$$ :
$$\frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\int{\frac{u}{5} d u}}}}{16} = \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\left(\frac{\int{u d u}}{5}\right)}}}{16}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$\frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\int{u d u}}}}{80}=\frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{80}=\frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{80}$$
Rappelons que $$$u=\sin{\left(5 x \right)}$$$ :
$$\frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{u}}^{2}}{160} = \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}{16} + \frac{{\color{red}{\sin{\left(5 x \right)}}}^{2}}{160}$$
Réécrivez $$$\sin\left(5 x \right)\cos\left(3 x \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=5 x$$$ et $$$\beta=3 x$$$:
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\int{5 \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\int{\left(\frac{5 \sin{\left(2 x \right)}}{2} + \frac{5 \sin{\left(8 x \right)}}{2}\right)d x}}}}{16}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = 5 \sin{\left(2 x \right)} + 5 \sin{\left(8 x \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\int{\left(\frac{5 \sin{\left(2 x \right)}}{2} + \frac{5 \sin{\left(8 x \right)}}{2}\right)d x}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\left(\frac{\int{\left(5 \sin{\left(2 x \right)} + 5 \sin{\left(8 x \right)}\right)d x}}{2}\right)}}}{16}$$
Intégrez terme à terme:
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\int{\left(5 \sin{\left(2 x \right)} + 5 \sin{\left(8 x \right)}\right)d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\left(\int{5 \sin{\left(2 x \right)} d x} + \int{5 \sin{\left(8 x \right)} d x}\right)}}}{32}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=5$$$ et $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{{\color{red}{\int{5 \sin{\left(2 x \right)} d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{{\color{red}{\left(5 \int{\sin{\left(2 x \right)} d x}\right)}}}{32}$$
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
Donc,
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{32}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{5 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{32}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{64} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} + \frac{5 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{64}$$
Rappelons que $$$u=2 x$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} - \frac{5 \cos{\left({\color{red}{u}} \right)}}{64} = \frac{\sin^{2}{\left(5 x \right)}}{160} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{\int{5 \sin{\left(8 x \right)} d x}}{32} - \frac{5 \cos{\left({\color{red}{\left(2 x\right)}} \right)}}{64}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=5$$$ et $$$f{\left(x \right)} = \sin{\left(8 x \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\int{5 \sin{\left(8 x \right)} d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{{\color{red}{\left(5 \int{\sin{\left(8 x \right)} d x}\right)}}}{32}$$
Soit $$$u=8 x$$$.
Alors $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{8}$$$.
L’intégrale devient
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{5 {\color{red}{\int{\sin{\left(8 x \right)} d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{8} d u}}}}{32}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{8}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{8} d u}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{5 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{8}\right)}}}{32}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{5 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{256} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} + \frac{5 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{256}$$
Rappelons que $$$u=8 x$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} - \frac{5 \cos{\left({\color{red}{u}} \right)}}{256} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} + \frac{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}{16} - \frac{5 \cos{\left({\color{red}{\left(8 x\right)}} \right)}}{256}$$
Réécrivez $$$\sin\left(5 x \right)\cos\left(x \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=5 x$$$ et $$$\beta=x$$$:
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\int{10 \sin{\left(5 x \right)} \cos{\left(x \right)} d x}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\int{\left(5 \sin{\left(4 x \right)} + 5 \sin{\left(6 x \right)}\right)d x}}}}{16}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = 10 \sin{\left(4 x \right)} + 10 \sin{\left(6 x \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\int{\left(5 \sin{\left(4 x \right)} + 5 \sin{\left(6 x \right)}\right)d x}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\left(\frac{\int{\left(10 \sin{\left(4 x \right)} + 10 \sin{\left(6 x \right)}\right)d x}}{2}\right)}}}{16}$$
Intégrez terme à terme:
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\int{\left(10 \sin{\left(4 x \right)} + 10 \sin{\left(6 x \right)}\right)d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\left(\int{10 \sin{\left(4 x \right)} d x} + \int{10 \sin{\left(6 x \right)} d x}\right)}}}{32}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=10$$$ et $$$f{\left(x \right)} = \sin{\left(4 x \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\int{10 \sin{\left(4 x \right)} d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\left(10 \int{\sin{\left(4 x \right)} d x}\right)}}}{32}$$
Soit $$$u=4 x$$$.
Alors $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{4}$$$.
Donc,
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\sin{\left(4 x \right)} d x}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}}{16}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{4}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{4} d u}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{5 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{4}\right)}}}{16}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{5 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{64} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} + \frac{5 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{64}$$
Rappelons que $$$u=4 x$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} - \frac{5 \cos{\left({\color{red}{u}} \right)}}{64} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{\int{10 \sin{\left(6 x \right)} d x}}{32} - \frac{5 \cos{\left({\color{red}{\left(4 x\right)}} \right)}}{64}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=10$$$ et $$$f{\left(x \right)} = \sin{\left(6 x \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\int{10 \sin{\left(6 x \right)} d x}}}}{32} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{{\color{red}{\left(10 \int{\sin{\left(6 x \right)} d x}\right)}}}{32}$$
Soit $$$u=6 x$$$.
Alors $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{6}$$$.
L’intégrale peut être réécrite sous la forme
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{5 {\color{red}{\int{\sin{\left(6 x \right)} d x}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{16}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{6}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{16} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{5 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{6}\right)}}}{16}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{5 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{96} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} + \frac{5 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{96}$$
Rappelons que $$$u=6 x$$$ :
$$\frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} - \frac{5 \cos{\left({\color{red}{u}} \right)}}{96} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(8 x \right)}}{256} - \frac{5 \cos{\left({\color{red}{\left(6 x\right)}} \right)}}{96}$$
Par conséquent,
$$\int{\sin{\left(5 x \right)} \cos^{5}{\left(x \right)} d x} = \frac{\sin^{2}{\left(5 x \right)}}{160} - \frac{5 \cos{\left(2 x \right)}}{64} - \frac{5 \cos{\left(4 x \right)}}{64} - \frac{5 \cos{\left(6 x \right)}}{96} - \frac{5 \cos{\left(8 x \right)}}{256}$$
Simplifier:
$$\int{\sin{\left(5 x \right)} \cos^{5}{\left(x \right)} d x} = - \frac{- 24 \sin^{2}{\left(5 x \right)} + 300 \cos{\left(2 x \right)} + 300 \cos{\left(4 x \right)} + 200 \cos{\left(6 x \right)} + 75 \cos{\left(8 x \right)}}{3840}$$
Ajouter la constante d'intégration :
$$\int{\sin{\left(5 x \right)} \cos^{5}{\left(x \right)} d x} = - \frac{- 24 \sin^{2}{\left(5 x \right)} + 300 \cos{\left(2 x \right)} + 300 \cos{\left(4 x \right)} + 200 \cos{\left(6 x \right)} + 75 \cos{\left(8 x \right)}}{3840}+C$$
Réponse
$$$\int \sin{\left(5 x \right)} \cos^{5}{\left(x \right)}\, dx = - \frac{- 24 \sin^{2}{\left(5 x \right)} + 300 \cos{\left(2 x \right)} + 300 \cos{\left(4 x \right)} + 200 \cos{\left(6 x \right)} + 75 \cos{\left(8 x \right)}}{3840} + C$$$A