Intégrale de $$$r^{n}$$$ par rapport à $$$n$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int r^{n}\, dn$$$.
Solution
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=r$$$:
$${\color{red}{\int{r^{n} d n}}} = {\color{red}{\frac{r^{n}}{\ln{\left(r \right)}}}}$$
Par conséquent,
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}$$
Ajouter la constante d'intégration :
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}+C$$
Réponse
$$$\int r^{n}\, dn = \frac{r^{n}}{\ln\left(r\right)} + C$$$A
Please try a new game Rotatly