Intégrale de $$$\frac{\ln\left(u\right)}{u}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\ln\left(u\right)}{u}\, du$$$.
Solution
Soit $$$v=\ln{\left(u \right)}$$$.
Alors $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{du}{u} = dv$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{u} d u}}} = {\color{red}{\int{v d v}}}$$
Appliquer la règle de puissance $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$${\color{red}{\int{v d v}}}={\color{red}{\frac{v^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{v^{2}}{2}\right)}}$$
Rappelons que $$$v=\ln{\left(u \right)}$$$ :
$$\frac{{\color{red}{v}}^{2}}{2} = \frac{{\color{red}{\ln{\left(u \right)}}}^{2}}{2}$$
Par conséquent,
$$\int{\frac{\ln{\left(u \right)}}{u} d u} = \frac{\ln{\left(u \right)}^{2}}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{\ln{\left(u \right)}}{u} d u} = \frac{\ln{\left(u \right)}^{2}}{2}+C$$
Réponse
$$$\int \frac{\ln\left(u\right)}{u}\, du = \frac{\ln^{2}\left(u\right)}{2} + C$$$A