Intégrale de $$$e^{4 x} \sin{\left(5 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int e^{4 x} \sin{\left(5 x \right)}\, dx$$$.
Solution
Pour l’intégrale $$$\int{e^{4 x} \sin{\left(5 x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\sin{\left(5 x \right)}$$$ et $$$\operatorname{dv}=e^{4 x} dx$$$.
Donc $$$\operatorname{du}=\left(\sin{\left(5 x \right)}\right)^{\prime }dx=5 \cos{\left(5 x \right)} dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (les étapes peuvent être consultées »).
Par conséquent,
$${\color{red}{\int{e^{4 x} \sin{\left(5 x \right)} d x}}}={\color{red}{\left(\sin{\left(5 x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot 5 \cos{\left(5 x \right)} d x}\right)}}={\color{red}{\left(\frac{e^{4 x} \sin{\left(5 x \right)}}{4} - \int{\frac{5 e^{4 x} \cos{\left(5 x \right)}}{4} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{5}{4}$$$ et $$$f{\left(x \right)} = e^{4 x} \cos{\left(5 x \right)}$$$ :
$$\frac{e^{4 x} \sin{\left(5 x \right)}}{4} - {\color{red}{\int{\frac{5 e^{4 x} \cos{\left(5 x \right)}}{4} d x}}} = \frac{e^{4 x} \sin{\left(5 x \right)}}{4} - {\color{red}{\left(\frac{5 \int{e^{4 x} \cos{\left(5 x \right)} d x}}{4}\right)}}$$
Pour l’intégrale $$$\int{e^{4 x} \cos{\left(5 x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\cos{\left(5 x \right)}$$$ et $$$\operatorname{dv}=e^{4 x} dx$$$.
Donc $$$\operatorname{du}=\left(\cos{\left(5 x \right)}\right)^{\prime }dx=- 5 \sin{\left(5 x \right)} dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (les étapes peuvent être consultées »).
Ainsi,
$$\frac{e^{4 x} \sin{\left(5 x \right)}}{4} - \frac{5 {\color{red}{\int{e^{4 x} \cos{\left(5 x \right)} d x}}}}{4}=\frac{e^{4 x} \sin{\left(5 x \right)}}{4} - \frac{5 {\color{red}{\left(\cos{\left(5 x \right)} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot \left(- 5 \sin{\left(5 x \right)}\right) d x}\right)}}}{4}=\frac{e^{4 x} \sin{\left(5 x \right)}}{4} - \frac{5 {\color{red}{\left(\frac{e^{4 x} \cos{\left(5 x \right)}}{4} - \int{\left(- \frac{5 e^{4 x} \sin{\left(5 x \right)}}{4}\right)d x}\right)}}}{4}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=- \frac{5}{4}$$$ et $$$f{\left(x \right)} = e^{4 x} \sin{\left(5 x \right)}$$$ :
$$\frac{e^{4 x} \sin{\left(5 x \right)}}{4} - \frac{5 e^{4 x} \cos{\left(5 x \right)}}{16} + \frac{5 {\color{red}{\int{\left(- \frac{5 e^{4 x} \sin{\left(5 x \right)}}{4}\right)d x}}}}{4} = \frac{e^{4 x} \sin{\left(5 x \right)}}{4} - \frac{5 e^{4 x} \cos{\left(5 x \right)}}{16} + \frac{5 {\color{red}{\left(- \frac{5 \int{e^{4 x} \sin{\left(5 x \right)} d x}}{4}\right)}}}{4}$$
Nous obtenons une intégrale que nous avons déjà vue.
Ainsi, nous avons obtenu l’équation simple suivante concernant l’intégrale :
$$\int{e^{4 x} \sin{\left(5 x \right)} d x} = \frac{e^{4 x} \sin{\left(5 x \right)}}{4} - \frac{5 e^{4 x} \cos{\left(5 x \right)}}{16} - \frac{25 \int{e^{4 x} \sin{\left(5 x \right)} d x}}{16}$$
En résolvant, on obtient que
$$\int{e^{4 x} \sin{\left(5 x \right)} d x} = \frac{\left(4 \sin{\left(5 x \right)} - 5 \cos{\left(5 x \right)}\right) e^{4 x}}{41}$$
Par conséquent,
$$\int{e^{4 x} \sin{\left(5 x \right)} d x} = \frac{\left(4 \sin{\left(5 x \right)} - 5 \cos{\left(5 x \right)}\right) e^{4 x}}{41}$$
Ajouter la constante d'intégration :
$$\int{e^{4 x} \sin{\left(5 x \right)} d x} = \frac{\left(4 \sin{\left(5 x \right)} - 5 \cos{\left(5 x \right)}\right) e^{4 x}}{41}+C$$
Réponse
$$$\int e^{4 x} \sin{\left(5 x \right)}\, dx = \frac{\left(4 \sin{\left(5 x \right)} - 5 \cos{\left(5 x \right)}\right) e^{4 x}}{41} + C$$$A