Intégrale de $$$\frac{1}{a y^{4}}$$$ par rapport à $$$y$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{a y^{4}}\, dy$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ avec $$$c=\frac{1}{a}$$$ et $$$f{\left(y \right)} = \frac{1}{y^{4}}$$$ :
$${\color{red}{\int{\frac{1}{a y^{4}} d y}}} = {\color{red}{\frac{\int{\frac{1}{y^{4}} d y}}{a}}}$$
Appliquer la règle de puissance $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-4$$$ :
$$\frac{{\color{red}{\int{\frac{1}{y^{4}} d y}}}}{a}=\frac{{\color{red}{\int{y^{-4} d y}}}}{a}=\frac{{\color{red}{\frac{y^{-4 + 1}}{-4 + 1}}}}{a}=\frac{{\color{red}{\left(- \frac{y^{-3}}{3}\right)}}}{a}=\frac{{\color{red}{\left(- \frac{1}{3 y^{3}}\right)}}}{a}$$
Par conséquent,
$$\int{\frac{1}{a y^{4}} d y} = - \frac{1}{3 a y^{3}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{a y^{4}} d y} = - \frac{1}{3 a y^{3}}+C$$
Réponse
$$$\int \frac{1}{a y^{4}}\, dy = - \frac{1}{3 a y^{3}} + C$$$A