Intégrale de $$$- x^{21} + \frac{1}{x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- x^{21} + \frac{1}{x}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- x^{21} + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} - \int{x^{21} d x}\right)}}$$
L’intégrale de $$$\frac{1}{x}$$$ est $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ :
$$- \int{x^{21} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{x^{21} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=21$$$ :
$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{x^{21} d x}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\frac{x^{1 + 21}}{1 + 21}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(\frac{x^{22}}{22}\right)}}$$
Par conséquent,
$$\int{\left(- x^{21} + \frac{1}{x}\right)d x} = - \frac{x^{22}}{22} + \ln{\left(\left|{x}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\left(- x^{21} + \frac{1}{x}\right)d x} = - \frac{x^{22}}{22} + \ln{\left(\left|{x}\right| \right)}+C$$
Réponse
$$$\int \left(- x^{21} + \frac{1}{x}\right)\, dx = \left(- \frac{x^{22}}{22} + \ln\left(\left|{x}\right|\right)\right) + C$$$A