Intégrale de $$$\frac{\left(x - 3\right)^{6}}{49 x^{32}}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\frac{\left(x - 3\right)^{6}}{49 x^{32}}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \frac{\left(x - 3\right)^{6}}{49 x^{32}}\, dx$$$.

Solution

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{49}$$$ et $$$f{\left(x \right)} = \frac{\left(x - 3\right)^{6}}{x^{32}}$$$ :

$${\color{red}{\int{\frac{\left(x - 3\right)^{6}}{49 x^{32}} d x}}} = {\color{red}{\left(\frac{\int{\frac{\left(x - 3\right)^{6}}{x^{32}} d x}}{49}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\frac{\left(x - 3\right)^{6}}{x^{32}} d x}}}}{49} = \frac{{\color{red}{\int{\left(\frac{1}{x^{26}} - \frac{18}{x^{27}} + \frac{135}{x^{28}} - \frac{540}{x^{29}} + \frac{1215}{x^{30}} - \frac{1458}{x^{31}} + \frac{729}{x^{32}}\right)d x}}}}{49}$$

Intégrez terme à terme:

$$\frac{{\color{red}{\int{\left(\frac{1}{x^{26}} - \frac{18}{x^{27}} + \frac{135}{x^{28}} - \frac{540}{x^{29}} + \frac{1215}{x^{30}} - \frac{1458}{x^{31}} + \frac{729}{x^{32}}\right)d x}}}}{49} = \frac{{\color{red}{\left(\int{\frac{729}{x^{32}} d x} - \int{\frac{1458}{x^{31}} d x} + \int{\frac{1215}{x^{30}} d x} - \int{\frac{540}{x^{29}} d x} + \int{\frac{135}{x^{28}} d x} - \int{\frac{18}{x^{27}} d x} + \int{\frac{1}{x^{26}} d x}\right)}}}{49}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-26$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} - \frac{\int{\frac{1458}{x^{31}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} + \frac{{\color{red}{\int{\frac{1}{x^{26}} d x}}}}{49}=\frac{\int{\frac{729}{x^{32}} d x}}{49} - \frac{\int{\frac{1458}{x^{31}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} + \frac{{\color{red}{\int{x^{-26} d x}}}}{49}=\frac{\int{\frac{729}{x^{32}} d x}}{49} - \frac{\int{\frac{1458}{x^{31}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} + \frac{{\color{red}{\frac{x^{-26 + 1}}{-26 + 1}}}}{49}=\frac{\int{\frac{729}{x^{32}} d x}}{49} - \frac{\int{\frac{1458}{x^{31}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} + \frac{{\color{red}{\left(- \frac{x^{-25}}{25}\right)}}}{49}=\frac{\int{\frac{729}{x^{32}} d x}}{49} - \frac{\int{\frac{1458}{x^{31}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} + \frac{{\color{red}{\left(- \frac{1}{25 x^{25}}\right)}}}{49}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=1458$$$ et $$$f{\left(x \right)} = \frac{1}{x^{31}}$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{{\color{red}{\int{\frac{1458}{x^{31}} d x}}}}{49} - \frac{1}{1225 x^{25}} = \frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{{\color{red}{\left(1458 \int{\frac{1}{x^{31}} d x}\right)}}}{49} - \frac{1}{1225 x^{25}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-31$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{1458 {\color{red}{\int{\frac{1}{x^{31}} d x}}}}{49} - \frac{1}{1225 x^{25}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{1458 {\color{red}{\int{x^{-31} d x}}}}{49} - \frac{1}{1225 x^{25}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{1458 {\color{red}{\frac{x^{-31 + 1}}{-31 + 1}}}}{49} - \frac{1}{1225 x^{25}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{1458 {\color{red}{\left(- \frac{x^{-30}}{30}\right)}}}{49} - \frac{1}{1225 x^{25}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} - \frac{\int{\frac{540}{x^{29}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{1458 {\color{red}{\left(- \frac{1}{30 x^{30}}\right)}}}{49} - \frac{1}{1225 x^{25}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=540$$$ et $$$f{\left(x \right)} = \frac{1}{x^{29}}$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{{\color{red}{\int{\frac{540}{x^{29}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{243}{245 x^{30}} = \frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{{\color{red}{\left(540 \int{\frac{1}{x^{29}} d x}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{243}{245 x^{30}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-29$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{540 {\color{red}{\int{\frac{1}{x^{29}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{540 {\color{red}{\int{x^{-29} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{540 {\color{red}{\frac{x^{-29 + 1}}{-29 + 1}}}}{49} - \frac{1}{1225 x^{25}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{540 {\color{red}{\left(- \frac{x^{-28}}{28}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{\int{\frac{18}{x^{27}} d x}}{49} - \frac{540 {\color{red}{\left(- \frac{1}{28 x^{28}}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{243}{245 x^{30}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=18$$$ et $$$f{\left(x \right)} = \frac{1}{x^{27}}$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{{\color{red}{\int{\frac{18}{x^{27}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} = \frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{{\color{red}{\left(18 \int{\frac{1}{x^{27}} d x}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-27$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{18 {\color{red}{\int{\frac{1}{x^{27}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{18 {\color{red}{\int{x^{-27} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{18 {\color{red}{\frac{x^{-27 + 1}}{-27 + 1}}}}{49} - \frac{1}{1225 x^{25}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{18 {\color{red}{\left(- \frac{x^{-26}}{26}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{\int{\frac{135}{x^{28}} d x}}{49} - \frac{18 {\color{red}{\left(- \frac{1}{26 x^{26}}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=135$$$ et $$$f{\left(x \right)} = \frac{1}{x^{28}}$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{{\color{red}{\int{\frac{135}{x^{28}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} = \frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{{\color{red}{\left(135 \int{\frac{1}{x^{28}} d x}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-28$$$ :

$$\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{135 {\color{red}{\int{\frac{1}{x^{28}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{135 {\color{red}{\int{x^{-28} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{135 {\color{red}{\frac{x^{-28 + 1}}{-28 + 1}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{135 {\color{red}{\left(- \frac{x^{-27}}{27}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{729}{x^{32}} d x}}{49} + \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{135 {\color{red}{\left(- \frac{1}{27 x^{27}}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=729$$$ et $$$f{\left(x \right)} = \frac{1}{x^{32}}$$$ :

$$\frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{{\color{red}{\int{\frac{729}{x^{32}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} = \frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{{\color{red}{\left(729 \int{\frac{1}{x^{32}} d x}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-32$$$ :

$$\frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{729 {\color{red}{\int{\frac{1}{x^{32}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{729 {\color{red}{\int{x^{-32} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{729 {\color{red}{\frac{x^{-32 + 1}}{-32 + 1}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{729 {\color{red}{\left(- \frac{x^{-31}}{31}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}=\frac{\int{\frac{1215}{x^{30}} d x}}{49} + \frac{729 {\color{red}{\left(- \frac{1}{31 x^{31}}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=1215$$$ et $$$f{\left(x \right)} = \frac{1}{x^{30}}$$$ :

$$\frac{{\color{red}{\int{\frac{1215}{x^{30}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}} = \frac{{\color{red}{\left(1215 \int{\frac{1}{x^{30}} d x}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-30$$$ :

$$\frac{1215 {\color{red}{\int{\frac{1}{x^{30}} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}}=\frac{1215 {\color{red}{\int{x^{-30} d x}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}}=\frac{1215 {\color{red}{\frac{x^{-30 + 1}}{-30 + 1}}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}}=\frac{1215 {\color{red}{\left(- \frac{x^{-29}}{29}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}}=\frac{1215 {\color{red}{\left(- \frac{1}{29 x^{29}}\right)}}}{49} - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}}$$

Par conséquent,

$$\int{\frac{\left(x - 3\right)^{6}}{49 x^{32}} d x} = - \frac{1}{1225 x^{25}} + \frac{9}{637 x^{26}} - \frac{5}{49 x^{27}} + \frac{135}{343 x^{28}} - \frac{1215}{1421 x^{29}} + \frac{243}{245 x^{30}} - \frac{729}{1519 x^{31}}$$

Simplifier:

$$\int{\frac{\left(x - 3\right)^{6}}{49 x^{32}} d x} = \frac{- 81809 x^{6} + 1415925 x^{5} - 10226125 x^{4} + 39443625 x^{3} - 85687875 x^{2} + 99397935 x - 48095775}{100216025 x^{31}}$$

Ajouter la constante d'intégration :

$$\int{\frac{\left(x - 3\right)^{6}}{49 x^{32}} d x} = \frac{- 81809 x^{6} + 1415925 x^{5} - 10226125 x^{4} + 39443625 x^{3} - 85687875 x^{2} + 99397935 x - 48095775}{100216025 x^{31}}+C$$

Réponse

$$$\int \frac{\left(x - 3\right)^{6}}{49 x^{32}}\, dx = \frac{- 81809 x^{6} + 1415925 x^{5} - 10226125 x^{4} + 39443625 x^{3} - 85687875 x^{2} + 99397935 x - 48095775}{100216025 x^{31}} + C$$$A


Please try a new game Rotatly