Intégrale de $$$\frac{1}{\left(1 - x\right)^{3}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{\left(1 - x\right)^{3}}\, dx$$$.
Solution
Soit $$$u=1 - x$$$.
Alors $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = - du$$$.
Par conséquent,
$${\color{red}{\int{\frac{1}{\left(1 - x\right)^{3}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u^{3}}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$ :
$${\color{red}{\int{\left(- \frac{1}{u^{3}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u^{3}} d u}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-3$$$ :
$$- {\color{red}{\int{\frac{1}{u^{3}} d u}}}=- {\color{red}{\int{u^{-3} d u}}}=- {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=- {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=- {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
Rappelons que $$$u=1 - x$$$ :
$$\frac{{\color{red}{u}}^{-2}}{2} = \frac{{\color{red}{\left(1 - x\right)}}^{-2}}{2}$$
Par conséquent,
$$\int{\frac{1}{\left(1 - x\right)^{3}} d x} = \frac{1}{2 \left(1 - x\right)^{2}}$$
Simplifier:
$$\int{\frac{1}{\left(1 - x\right)^{3}} d x} = \frac{1}{2 \left(x - 1\right)^{2}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{\left(1 - x\right)^{3}} d x} = \frac{1}{2 \left(x - 1\right)^{2}}+C$$
Réponse
$$$\int \frac{1}{\left(1 - x\right)^{3}}\, dx = \frac{1}{2 \left(x - 1\right)^{2}} + C$$$A