Intégrale de $$$\sin{\left(x \right)} \cos^{2}{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx$$$.
Solution
Soit $$$u=\cos{\left(x \right)}$$$.
Alors $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sin{\left(x \right)} dx = - du$$$.
L’intégrale devient
$${\color{red}{\int{\sin{\left(x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- u^{2}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = u^{2}$$$ :
$${\color{red}{\int{\left(- u^{2}\right)d u}}} = {\color{red}{\left(- \int{u^{2} d u}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Rappelons que $$$u=\cos{\left(x \right)}$$$ :
$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\cos{\left(x \right)}}}^{3}}{3}$$
Par conséquent,
$$\int{\sin{\left(x \right)} \cos^{2}{\left(x \right)} d x} = - \frac{\cos^{3}{\left(x \right)}}{3}$$
Ajouter la constante d'intégration :
$$\int{\sin{\left(x \right)} \cos^{2}{\left(x \right)} d x} = - \frac{\cos^{3}{\left(x \right)}}{3}+C$$
Réponse
$$$\int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = - \frac{\cos^{3}{\left(x \right)}}{3} + C$$$A