Intégrale de $$$\cos{\left(\frac{x^{2}}{18} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos{\left(\frac{x^{2}}{18} \right)}\, dx$$$.
Solution
Soit $$$u=\frac{\sqrt{2} x}{6}$$$.
Alors $$$du=\left(\frac{\sqrt{2} x}{6}\right)^{\prime }dx = \frac{\sqrt{2}}{6} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = 3 \sqrt{2} du$$$.
Par conséquent,
$${\color{red}{\int{\cos{\left(\frac{x^{2}}{18} \right)} d x}}} = {\color{red}{\int{3 \sqrt{2} \cos{\left(u^{2} \right)} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=3 \sqrt{2}$$$ et $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$ :
$${\color{red}{\int{3 \sqrt{2} \cos{\left(u^{2} \right)} d u}}} = {\color{red}{\left(3 \sqrt{2} \int{\cos{\left(u^{2} \right)} d u}\right)}}$$
Cette intégrale (Intégrale cosinus de Fresnel) n’admet pas de forme fermée :
$$3 \sqrt{2} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}} = 3 \sqrt{2} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
Rappelons que $$$u=\frac{\sqrt{2} x}{6}$$$ :
$$3 \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right) = 3 \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{2} x}{6}\right)}}}{\sqrt{\pi}}\right)$$
Par conséquent,
$$\int{\cos{\left(\frac{x^{2}}{18} \right)} d x} = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right)$$
Ajouter la constante d'intégration :
$$\int{\cos{\left(\frac{x^{2}}{18} \right)} d x} = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right)+C$$
Réponse
$$$\int \cos{\left(\frac{x^{2}}{18} \right)}\, dx = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right) + C$$$A