Intégrale de $$$\cos{\left(5 x^{2} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos{\left(5 x^{2} \right)}\, dx$$$.
Solution
Soit $$$u=\sqrt{5} x$$$.
Alors $$$du=\left(\sqrt{5} x\right)^{\prime }dx = \sqrt{5} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{\sqrt{5} du}{5}$$$.
Ainsi,
$${\color{red}{\int{\cos{\left(5 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{\sqrt{5}}{5}$$$ et $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$ :
$${\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}} = {\color{red}{\left(\frac{\sqrt{5} \int{\cos{\left(u^{2} \right)} d u}}{5}\right)}}$$
Cette intégrale (Intégrale cosinus de Fresnel) n’admet pas de forme fermée :
$$\frac{\sqrt{5} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{5} = \frac{\sqrt{5} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{5}$$
Rappelons que $$$u=\sqrt{5} x$$$ :
$$\frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{10} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{5} x}}}{\sqrt{\pi}}\right)}{10}$$
Par conséquent,
$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}$$
Ajouter la constante d'intégration :
$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}+C$$
Réponse
$$$\int \cos{\left(5 x^{2} \right)}\, dx = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10} + C$$$A