Intégrale de $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \operatorname{atan}{\left(\sqrt{x} \right)}\, dx$$$.
Solution
Pour l’intégrale $$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\operatorname{atan}{\left(\sqrt{x} \right)}$$$ et $$$\operatorname{dv}=dx$$$.
Donc $$$\operatorname{du}=\left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)^{\prime }dx=\frac{1}{2 \sqrt{x} \left(x + 1\right)} dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d x}=x$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(\sqrt{x} \right)} \cdot x-\int{x \cdot \frac{1}{2 \sqrt{x} \left(x + 1\right)} d x}\right)}}={\color{red}{\left(x \operatorname{atan}{\left(\sqrt{x} \right)} - \int{\frac{\sqrt{x}}{2 x + 2} d x}\right)}}$$
Simplifier l’intégrande:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 x + 2} d x}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 \left(x + 1\right)} d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \frac{\sqrt{x}}{x + 1}$$$ :
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 \left(x + 1\right)} d x}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\left(\frac{\int{\frac{\sqrt{x}}{x + 1} d x}}{2}\right)}}$$
Soit $$$u=\sqrt{x}$$$.
Alors $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
L’intégrale devient
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{\sqrt{x}}{x + 1} d x}}}}{2} = x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=2$$$ et $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ :
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}}{2} = x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\left(2 \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}}{2}$$
Réécrire et décomposer la fraction:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Intégrez terme à terme:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
L’intégrale de $$$\frac{1}{u^{2} + 1}$$$ est $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$ :
$$- u + x \operatorname{atan}{\left(\sqrt{x} \right)} + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + x \operatorname{atan}{\left(\sqrt{x} \right)} + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Rappelons que $$$u=\sqrt{x}$$$ :
$$x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left({\color{red}{\sqrt{x}}} \right)} - {\color{red}{\sqrt{x}}}$$
Par conséquent,
$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}$$
Ajouter la constante d'intégration :
$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}+C$$
Réponse
$$$\int \operatorname{atan}{\left(\sqrt{x} \right)}\, dx = \left(- \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}\right) + C$$$A