Intégrale de $$$9 \cdot 15^{- x} x^{2}$$$

La calculatrice trouvera l’intégrale/primitive de $$$9 \cdot 15^{- x} x^{2}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int 9 \cdot 15^{- x} x^{2}\, dx$$$.

Solution

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=9$$$ et $$$f{\left(x \right)} = 15^{- x} x^{2}$$$ :

$${\color{red}{\int{9 \cdot 15^{- x} x^{2} d x}}} = {\color{red}{\left(9 \int{15^{- x} x^{2} d x}\right)}}$$

Pour l’intégrale $$$\int{15^{- x} x^{2} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Soient $$$\operatorname{u}=x^{2}$$$ et $$$\operatorname{dv}=15^{- x} dx$$$.

Donc $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{15^{- x} d x}=- \frac{15^{- x}}{\ln{\left(15 \right)}}$$$ (les étapes peuvent être consultées »).

L’intégrale devient

$$9 {\color{red}{\int{15^{- x} x^{2} d x}}}=9 {\color{red}{\left(x^{2} \cdot \left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)-\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right) \cdot 2 x d x}\right)}}=9 {\color{red}{\left(- \int{\left(- \frac{2 \cdot 15^{- x} x}{\ln{\left(15 \right)}}\right)d x} - \frac{15^{- x} x^{2}}{\ln{\left(15 \right)}}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=- \frac{2}{\ln{\left(15 \right)}}$$$ et $$$f{\left(x \right)} = 15^{- x} x$$$ :

$$- 9 {\color{red}{\int{\left(- \frac{2 \cdot 15^{- x} x}{\ln{\left(15 \right)}}\right)d x}}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = - 9 {\color{red}{\left(- \frac{2 \int{15^{- x} x d x}}{\ln{\left(15 \right)}}\right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Pour l’intégrale $$$\int{15^{- x} x d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Soient $$$\operatorname{u}=x$$$ et $$$\operatorname{dv}=15^{- x} dx$$$.

Donc $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{15^{- x} d x}=- \frac{15^{- x}}{\ln{\left(15 \right)}}$$$ (les étapes peuvent être consultées »).

L’intégrale peut être réécrite sous la forme

$$\frac{18 {\color{red}{\int{15^{- x} x d x}}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}=\frac{18 {\color{red}{\left(x \cdot \left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)-\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right) \cdot 1 d x}\right)}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}=\frac{18 {\color{red}{\left(- \int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)d x} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}}}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=- \frac{1}{\ln{\left(15 \right)}}$$$ et $$$f{\left(x \right)} = 15^{- x}$$$ :

$$\frac{18 \left(- {\color{red}{\int{\left(- \frac{15^{- x}}{\ln{\left(15 \right)}}\right)d x}}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- {\color{red}{\left(- \frac{\int{15^{- x} d x}}{\ln{\left(15 \right)}}\right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Soit $$$u=- x$$$.

Alors $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = - du$$$.

Donc,

$$\frac{18 \left(\frac{{\color{red}{\int{15^{- x} d x}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(\frac{{\color{red}{\int{\left(- 15^{u}\right)d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = 15^{u}$$$ :

$$\frac{18 \left(\frac{{\color{red}{\int{\left(- 15^{u}\right)d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(\frac{{\color{red}{\left(- \int{15^{u} d u}\right)}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=15$$$:

$$\frac{18 \left(- \frac{{\color{red}{\int{15^{u} d u}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- \frac{{\color{red}{\frac{15^{u}}{\ln{\left(15 \right)}}}}}{\ln{\left(15 \right)}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Rappelons que $$$u=- x$$$ :

$$\frac{18 \left(- \frac{15^{{\color{red}{u}}}}{\ln{\left(15 \right)}^{2}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}} = \frac{18 \left(- \frac{15^{{\color{red}{\left(- x\right)}}}}{\ln{\left(15 \right)}^{2}} - \frac{15^{- x} x}{\ln{\left(15 \right)}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Par conséquent,

$$\int{9 \cdot 15^{- x} x^{2} d x} = \frac{18 \left(- \frac{15^{- x} x}{\ln{\left(15 \right)}} - \frac{15^{- x}}{\ln{\left(15 \right)}^{2}}\right)}{\ln{\left(15 \right)}} - \frac{9 \cdot 15^{- x} x^{2}}{\ln{\left(15 \right)}}$$

Simplifier:

$$\int{9 \cdot 15^{- x} x^{2} d x} = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln{\left(15 \right)}^{2} + 2 x \ln{\left(15 \right)} + 2\right)}{\ln{\left(15 \right)}^{3}}$$

Ajouter la constante d'intégration :

$$\int{9 \cdot 15^{- x} x^{2} d x} = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln{\left(15 \right)}^{2} + 2 x \ln{\left(15 \right)} + 2\right)}{\ln{\left(15 \right)}^{3}}+C$$

Réponse

$$$\int 9 \cdot 15^{- x} x^{2}\, dx = - \frac{9 \cdot 225^{x} 3375^{- x} \left(x^{2} \ln^{2}\left(15\right) + 2 x \ln\left(15\right) + 2\right)}{\ln^{3}\left(15\right)} + C$$$A


Please try a new game Rotatly