Intégrale de $$$9 x + \frac{6}{x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(9 x + \frac{6}{x}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(9 x + \frac{6}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{6}{x} d x} + \int{9 x d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=6$$$ et $$$f{\left(x \right)} = \frac{1}{x}$$$ :
$$\int{9 x d x} + {\color{red}{\int{\frac{6}{x} d x}}} = \int{9 x d x} + {\color{red}{\left(6 \int{\frac{1}{x} d x}\right)}}$$
L’intégrale de $$$\frac{1}{x}$$$ est $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ :
$$\int{9 x d x} + 6 {\color{red}{\int{\frac{1}{x} d x}}} = \int{9 x d x} + 6 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=9$$$ et $$$f{\left(x \right)} = x$$$ :
$$6 \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{9 x d x}}} = 6 \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(9 \int{x d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$6 \ln{\left(\left|{x}\right| \right)} + 9 {\color{red}{\int{x d x}}}=6 \ln{\left(\left|{x}\right| \right)} + 9 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=6 \ln{\left(\left|{x}\right| \right)} + 9 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Par conséquent,
$$\int{\left(9 x + \frac{6}{x}\right)d x} = \frac{9 x^{2}}{2} + 6 \ln{\left(\left|{x}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\left(9 x + \frac{6}{x}\right)d x} = \frac{9 x^{2}}{2} + 6 \ln{\left(\left|{x}\right| \right)}+C$$
Réponse
$$$\int \left(9 x + \frac{6}{x}\right)\, dx = \left(\frac{9 x^{2}}{2} + 6 \ln\left(\left|{x}\right|\right)\right) + C$$$A