Intégrale de $$$8 \sin^{2}{\left(t \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 8 \sin^{2}{\left(t \right)}\, dt$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=8$$$ et $$$f{\left(t \right)} = \sin^{2}{\left(t \right)}$$$ :
$${\color{red}{\int{8 \sin^{2}{\left(t \right)} d t}}} = {\color{red}{\left(8 \int{\sin^{2}{\left(t \right)} d t}\right)}}$$
Appliquer la formule de réduction de puissance $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ avec $$$\alpha=t$$$:
$$8 {\color{red}{\int{\sin^{2}{\left(t \right)} d t}}} = 8 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(t \right)} = 1 - \cos{\left(2 t \right)}$$$ :
$$8 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}} = 8 {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}{2}\right)}}$$
Intégrez terme à terme:
$$4 {\color{red}{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}} = 4 {\color{red}{\left(\int{1 d t} - \int{\cos{\left(2 t \right)} d t}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dt = c t$$$ avec $$$c=1$$$:
$$- 4 \int{\cos{\left(2 t \right)} d t} + 4 {\color{red}{\int{1 d t}}} = - 4 \int{\cos{\left(2 t \right)} d t} + 4 {\color{red}{t}}$$
Soit $$$u=2 t$$$.
Alors $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$dt = \frac{du}{2}$$$.
Donc,
$$4 t - 4 {\color{red}{\int{\cos{\left(2 t \right)} d t}}} = 4 t - 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$4 t - 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 4 t - 4 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$4 t - 2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 4 t - 2 {\color{red}{\sin{\left(u \right)}}}$$
Rappelons que $$$u=2 t$$$ :
$$4 t - 2 \sin{\left({\color{red}{u}} \right)} = 4 t - 2 \sin{\left({\color{red}{\left(2 t\right)}} \right)}$$
Par conséquent,
$$\int{8 \sin^{2}{\left(t \right)} d t} = 4 t - 2 \sin{\left(2 t \right)}$$
Ajouter la constante d'intégration :
$$\int{8 \sin^{2}{\left(t \right)} d t} = 4 t - 2 \sin{\left(2 t \right)}+C$$
Réponse
$$$\int 8 \sin^{2}{\left(t \right)}\, dt = \left(4 t - 2 \sin{\left(2 t \right)}\right) + C$$$A