Intégrale de $$$\frac{6}{\left(3 x - 2\right)^{3}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=6$$$ et $$$f{\left(x \right)} = \frac{1}{\left(3 x - 2\right)^{3}}$$$ :
$${\color{red}{\int{\frac{6}{\left(3 x - 2\right)^{3}} d x}}} = {\color{red}{\left(6 \int{\frac{1}{\left(3 x - 2\right)^{3}} d x}\right)}}$$
Soit $$$u=3 x - 2$$$.
Alors $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{3}$$$.
L’intégrale peut être réécrite sous la forme
$$6 {\color{red}{\int{\frac{1}{\left(3 x - 2\right)^{3}} d x}}} = 6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{3}$$$ et $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$ :
$$6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}} = 6 {\color{red}{\left(\frac{\int{\frac{1}{u^{3}} d u}}{3}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-3$$$ :
$$2 {\color{red}{\int{\frac{1}{u^{3}} d u}}}=2 {\color{red}{\int{u^{-3} d u}}}=2 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=2 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=2 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
Rappelons que $$$u=3 x - 2$$$ :
$$- {\color{red}{u}}^{-2} = - {\color{red}{\left(3 x - 2\right)}}^{-2}$$
Par conséquent,
$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}$$
Ajouter la constante d'intégration :
$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}+C$$
Réponse
$$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx = - \frac{1}{\left(3 x - 2\right)^{2}} + C$$$A