Intégrale de $$$4 \sin{\left(\frac{\pi t}{2} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=4$$$ et $$$f{\left(t \right)} = \sin{\left(\frac{\pi t}{2} \right)}$$$ :
$${\color{red}{\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t}}} = {\color{red}{\left(4 \int{\sin{\left(\frac{\pi t}{2} \right)} d t}\right)}}$$
Soit $$$u=\frac{\pi t}{2}$$$.
Alors $$$du=\left(\frac{\pi t}{2}\right)^{\prime }dt = \frac{\pi}{2} dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$dt = \frac{2 du}{\pi}$$$.
L’intégrale peut être réécrite sous la forme
$$4 {\color{red}{\int{\sin{\left(\frac{\pi t}{2} \right)} d t}}} = 4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{2}{\pi}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}} = 4 {\color{red}{\left(\frac{2 \int{\sin{\left(u \right)} d u}}{\pi}\right)}}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{8 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{8 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$
Rappelons que $$$u=\frac{\pi t}{2}$$$ :
$$- \frac{8 \cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{8 \cos{\left({\color{red}{\left(\frac{\pi t}{2}\right)}} \right)}}{\pi}$$
Par conséquent,
$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}$$
Ajouter la constante d'intégration :
$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}+C$$
Réponse
$$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi} + C$$$A