Intégrale de $$$- z_{2} \left(3 z - 3\right) + 4$$$ par rapport à $$$z$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- z_{2} \left(3 z - 3\right) + 4\right)\, dz$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z}}} = {\color{red}{\left(\int{4 d z} - \int{z_{2} \left(3 z - 3\right) d z}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dz = c z$$$ avec $$$c=4$$$:
$$- \int{z_{2} \left(3 z - 3\right) d z} + {\color{red}{\int{4 d z}}} = - \int{z_{2} \left(3 z - 3\right) d z} + {\color{red}{\left(4 z\right)}}$$
Simplifier l’intégrande:
$$4 z - {\color{red}{\int{z_{2} \left(3 z - 3\right) d z}}} = 4 z - {\color{red}{\int{3 z_{2} \left(z - 1\right) d z}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$ avec $$$c=3 z_{2}$$$ et $$$f{\left(z \right)} = z - 1$$$ :
$$4 z - {\color{red}{\int{3 z_{2} \left(z - 1\right) d z}}} = 4 z - {\color{red}{\left(3 z_{2} \int{\left(z - 1\right)d z}\right)}}$$
Intégrez terme à terme:
$$4 z - 3 z_{2} {\color{red}{\int{\left(z - 1\right)d z}}} = 4 z - 3 z_{2} {\color{red}{\left(- \int{1 d z} + \int{z d z}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dz = c z$$$ avec $$$c=1$$$:
$$4 z - 3 z_{2} \left(\int{z d z} - {\color{red}{\int{1 d z}}}\right) = 4 z - 3 z_{2} \left(\int{z d z} - {\color{red}{z}}\right)$$
Appliquer la règle de puissance $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$4 z - 3 z_{2} \left(- z + {\color{red}{\int{z d z}}}\right)=4 z - 3 z_{2} \left(- z + {\color{red}{\frac{z^{1 + 1}}{1 + 1}}}\right)=4 z - 3 z_{2} \left(- z + {\color{red}{\left(\frac{z^{2}}{2}\right)}}\right)$$
Par conséquent,
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = 4 z - 3 z_{2} \left(\frac{z^{2}}{2} - z\right)$$
Simplifier:
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2}$$
Ajouter la constante d'intégration :
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2}+C$$
Réponse
$$$\int \left(- z_{2} \left(3 z - 3\right) + 4\right)\, dz = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2} + C$$$A