Intégrale de $$$23 \cos^{3}{\left(35 x \right)}$$$

La calculatrice trouvera l’intégrale/primitive de $$$23 \cos^{3}{\left(35 x \right)}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int 23 \cos^{3}{\left(35 x \right)}\, dx$$$.

Solution

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=23$$$ et $$$f{\left(x \right)} = \cos^{3}{\left(35 x \right)}$$$ :

$${\color{red}{\int{23 \cos^{3}{\left(35 x \right)} d x}}} = {\color{red}{\left(23 \int{\cos^{3}{\left(35 x \right)} d x}\right)}}$$

Soit $$$u=35 x$$$.

Alors $$$du=\left(35 x\right)^{\prime }dx = 35 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{35}$$$.

L’intégrale peut être réécrite sous la forme

$$23 {\color{red}{\int{\cos^{3}{\left(35 x \right)} d x}}} = 23 {\color{red}{\int{\frac{\cos^{3}{\left(u \right)}}{35} d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{35}$$$ et $$$f{\left(u \right)} = \cos^{3}{\left(u \right)}$$$ :

$$23 {\color{red}{\int{\frac{\cos^{3}{\left(u \right)}}{35} d u}}} = 23 {\color{red}{\left(\frac{\int{\cos^{3}{\left(u \right)} d u}}{35}\right)}}$$

Isolez un cosinus et exprimez tout le reste en fonction du sinus, en utilisant la formule $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ avec $$$\alpha= u $$$:

$$\frac{23 {\color{red}{\int{\cos^{3}{\left(u \right)} d u}}}}{35} = \frac{23 {\color{red}{\int{\left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)} d u}}}}{35}$$

Soit $$$v=\sin{\left(u \right)}$$$.

Alors $$$dv=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$\cos{\left(u \right)} du = dv$$$.

L’intégrale peut être réécrite sous la forme

$$\frac{23 {\color{red}{\int{\left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)} d u}}}}{35} = \frac{23 {\color{red}{\int{\left(1 - v^{2}\right)d v}}}}{35}$$

Intégrez terme à terme:

$$\frac{23 {\color{red}{\int{\left(1 - v^{2}\right)d v}}}}{35} = \frac{23 {\color{red}{\left(\int{1 d v} - \int{v^{2} d v}\right)}}}{35}$$

Appliquez la règle de la constante $$$\int c\, dv = c v$$$ avec $$$c=1$$$:

$$- \frac{23 \int{v^{2} d v}}{35} + \frac{23 {\color{red}{\int{1 d v}}}}{35} = - \frac{23 \int{v^{2} d v}}{35} + \frac{23 {\color{red}{v}}}{35}$$

Appliquer la règle de puissance $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :

$$\frac{23 v}{35} - \frac{23 {\color{red}{\int{v^{2} d v}}}}{35}=\frac{23 v}{35} - \frac{23 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{35}=\frac{23 v}{35} - \frac{23 {\color{red}{\left(\frac{v^{3}}{3}\right)}}}{35}$$

Rappelons que $$$v=\sin{\left(u \right)}$$$ :

$$\frac{23 {\color{red}{v}}}{35} - \frac{23 {\color{red}{v}}^{3}}{105} = \frac{23 {\color{red}{\sin{\left(u \right)}}}}{35} - \frac{23 {\color{red}{\sin{\left(u \right)}}}^{3}}{105}$$

Rappelons que $$$u=35 x$$$ :

$$\frac{23 \sin{\left({\color{red}{u}} \right)}}{35} - \frac{23 \sin^{3}{\left({\color{red}{u}} \right)}}{105} = \frac{23 \sin{\left({\color{red}{\left(35 x\right)}} \right)}}{35} - \frac{23 \sin^{3}{\left({\color{red}{\left(35 x\right)}} \right)}}{105}$$

Par conséquent,

$$\int{23 \cos^{3}{\left(35 x \right)} d x} = - \frac{23 \sin^{3}{\left(35 x \right)}}{105} + \frac{23 \sin{\left(35 x \right)}}{35}$$

Simplifier:

$$\int{23 \cos^{3}{\left(35 x \right)} d x} = \frac{23 \left(3 - \sin^{2}{\left(35 x \right)}\right) \sin{\left(35 x \right)}}{105}$$

Ajouter la constante d'intégration :

$$\int{23 \cos^{3}{\left(35 x \right)} d x} = \frac{23 \left(3 - \sin^{2}{\left(35 x \right)}\right) \sin{\left(35 x \right)}}{105}+C$$

Réponse

$$$\int 23 \cos^{3}{\left(35 x \right)}\, dx = \frac{23 \left(3 - \sin^{2}{\left(35 x \right)}\right) \sin{\left(35 x \right)}}{105} + C$$$A


Please try a new game Rotatly