Intégrale de $$$\left(- a + x\right)^{- p}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- a + x\right)^{- p}\, dx$$$.
Solution
L’entrée est réécrite : $$$\int{\left(- a + x\right)^{- p} d x}=\int{\left(\frac{1}{- a + x}\right)^{p} d x}$$$.
Soit $$$u=- a + x$$$.
Alors $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Ainsi,
$${\color{red}{\int{\left(\frac{1}{- a + x}\right)^{p} d x}}} = {\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}}$$
Soit $$$v=\frac{1}{u}$$$.
Alors $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{du}{u^{2}} = - dv$$$.
Par conséquent,
$${\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}} = {\color{red}{\int{\left(- v^{p - 2}\right)d v}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=-1$$$ et $$$f{\left(v \right)} = v^{p - 2}$$$ :
$${\color{red}{\int{\left(- v^{p - 2}\right)d v}}} = {\color{red}{\left(- \int{v^{p - 2} d v}\right)}}$$
Appliquer la règle de puissance $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=p - 2$$$ :
$$- {\color{red}{\int{v^{p - 2} d v}}}=- {\color{red}{\frac{v^{\left(p - 2\right) + 1}}{\left(p - 2\right) + 1}}}=- {\color{red}{\frac{v^{p - 1}}{p - 1}}}$$
Rappelons que $$$v=\frac{1}{u}$$$ :
$$- \frac{{\color{red}{v}}^{p - 1}}{p - 1} = - \frac{{\color{red}{\frac{1}{u}}}^{p - 1}}{p - 1}$$
Rappelons que $$$u=- a + x$$$ :
$$- \frac{\left({\color{red}{u}}^{-1}\right)^{p - 1}}{p - 1} = - \frac{\left({\color{red}{\left(- a + x\right)}}^{-1}\right)^{p - 1}}{p - 1}$$
Par conséquent,
$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}$$
Ajouter la constante d'intégration :
$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}+C$$
Réponse
$$$\int \left(- a + x\right)^{- p}\, dx = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1} + C$$$A