Intégrale de $$$\frac{1}{1 - 2 x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{1 - 2 x}\, dx$$$.
Solution
Soit $$$u=1 - 2 x$$$.
Alors $$$du=\left(1 - 2 x\right)^{\prime }dx = - 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = - \frac{du}{2}$$$.
Donc,
$${\color{red}{\int{\frac{1}{1 - 2 x} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=- \frac{1}{2}$$$ et $$$f{\left(u \right)} = \frac{1}{u}$$$ :
$${\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Rappelons que $$$u=1 - 2 x$$$ :
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(1 - 2 x\right)}}}\right| \right)}}{2}$$
Par conséquent,
$$\int{\frac{1}{1 - 2 x} d x} = - \frac{\ln{\left(\left|{2 x - 1}\right| \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{1 - 2 x} d x} = - \frac{\ln{\left(\left|{2 x - 1}\right| \right)}}{2}+C$$
Réponse
$$$\int \frac{1}{1 - 2 x}\, dx = - \frac{\ln\left(\left|{2 x - 1}\right|\right)}{2} + C$$$A