Intégrale de $$$\frac{1}{\left(x - 2\right)^{2} \left(x - 1\right)^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{\left(x - 2\right)^{2} \left(x - 1\right)^{2}}\, dx$$$.
Solution
Effectuer la décomposition en fractions partielles (les étapes peuvent être vues »):
$${\color{red}{\int{\frac{1}{\left(x - 2\right)^{2} \left(x - 1\right)^{2}} d x}}} = {\color{red}{\int{\left(\frac{2}{x - 1} + \frac{1}{\left(x - 1\right)^{2}} - \frac{2}{x - 2} + \frac{1}{\left(x - 2\right)^{2}}\right)d x}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(\frac{2}{x - 1} + \frac{1}{\left(x - 1\right)^{2}} - \frac{2}{x - 2} + \frac{1}{\left(x - 2\right)^{2}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{1}{\left(x - 1\right)^{2}} d x} + \int{\frac{2}{x - 1} d x}\right)}}$$
Soit $$$u=x - 1$$$.
Alors $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Par conséquent,
$$\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = \int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-2$$$ :
$$\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{u^{-2} d u}}}=\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\left(- u^{-1}\right)}}=\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\left(- \frac{1}{u}\right)}}$$
Rappelons que $$$u=x - 1$$$ :
$$\int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} - {\color{red}{u}}^{-1} = \int{\frac{1}{\left(x - 2\right)^{2}} d x} - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} - {\color{red}{\left(x - 1\right)}}^{-1}$$
Soit $$$u=x - 2$$$.
Alors $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Donc,
$$- \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{\frac{1}{\left(x - 2\right)^{2}} d x}}} - \frac{1}{x - 1} = - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}} - \frac{1}{x - 1}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-2$$$ :
$$- \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}} - \frac{1}{x - 1}=- \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\int{u^{-2} d u}}} - \frac{1}{x - 1}=- \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}} - \frac{1}{x - 1}=- \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\left(- u^{-1}\right)}} - \frac{1}{x - 1}=- \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} + {\color{red}{\left(- \frac{1}{u}\right)}} - \frac{1}{x - 1}$$
Rappelons que $$$u=x - 2$$$ :
$$- \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} - {\color{red}{u}}^{-1} - \frac{1}{x - 1} = - \int{\frac{2}{x - 2} d x} + \int{\frac{2}{x - 1} d x} - {\color{red}{\left(x - 2\right)}}^{-1} - \frac{1}{x - 1}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ :
$$\int{\frac{2}{x - 1} d x} - {\color{red}{\int{\frac{2}{x - 2} d x}}} - \frac{1}{x - 1} - \frac{1}{x - 2} = \int{\frac{2}{x - 1} d x} - {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
Soit $$$u=x - 2$$$.
Alors $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Donc,
$$\int{\frac{2}{x - 1} d x} - 2 {\color{red}{\int{\frac{1}{x - 2} d x}}} - \frac{1}{x - 1} - \frac{1}{x - 2} = \int{\frac{2}{x - 1} d x} - 2 {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\int{\frac{2}{x - 1} d x} - 2 {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1} - \frac{1}{x - 2} = \int{\frac{2}{x - 1} d x} - 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
Rappelons que $$$u=x - 2$$$ :
$$- 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\frac{2}{x - 1} d x} - \frac{1}{x - 1} - \frac{1}{x - 2} = - 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)} + \int{\frac{2}{x - 1} d x} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ :
$$- 2 \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\int{\frac{2}{x - 1} d x}}} - \frac{1}{x - 1} - \frac{1}{x - 2} = - 2 \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\left(2 \int{\frac{1}{x - 1} d x}\right)}} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
Soit $$$u=x - 1$$$.
Alors $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Ainsi,
$$- 2 \ln{\left(\left|{x - 2}\right| \right)} + 2 {\color{red}{\int{\frac{1}{x - 1} d x}}} - \frac{1}{x - 1} - \frac{1}{x - 2} = - 2 \ln{\left(\left|{x - 2}\right| \right)} + 2 {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- 2 \ln{\left(\left|{x - 2}\right| \right)} + 2 {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1} - \frac{1}{x - 2} = - 2 \ln{\left(\left|{x - 2}\right| \right)} + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
Rappelons que $$$u=x - 1$$$ :
$$- 2 \ln{\left(\left|{x - 2}\right| \right)} + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \frac{1}{x - 1} - \frac{1}{x - 2} = - 2 \ln{\left(\left|{x - 2}\right| \right)} + 2 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
Par conséquent,
$$\int{\frac{1}{\left(x - 2\right)^{2} \left(x - 1\right)^{2}} d x} = - 2 \ln{\left(\left|{x - 2}\right| \right)} + 2 \ln{\left(\left|{x - 1}\right| \right)} - \frac{1}{x - 1} - \frac{1}{x - 2}$$
Simplifier:
$$\int{\frac{1}{\left(x - 2\right)^{2} \left(x - 1\right)^{2}} d x} = \frac{- 2 x + 2 \left(x - 2\right) \left(x - 1\right) \left(- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)}\right) + 3}{\left(x - 2\right) \left(x - 1\right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{\left(x - 2\right)^{2} \left(x - 1\right)^{2}} d x} = \frac{- 2 x + 2 \left(x - 2\right) \left(x - 1\right) \left(- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)}\right) + 3}{\left(x - 2\right) \left(x - 1\right)}+C$$
Réponse
$$$\int \frac{1}{\left(x - 2\right)^{2} \left(x - 1\right)^{2}}\, dx = \frac{- 2 x + 2 \left(x - 2\right) \left(x - 1\right) \left(- \ln\left(\left|{x - 2}\right|\right) + \ln\left(\left|{x - 1}\right|\right)\right) + 3}{\left(x - 2\right) \left(x - 1\right)} + C$$$A