Intégrale de $$$- \sqrt{3 - x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- \sqrt{3 - x}\right)\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=-1$$$ et $$$f{\left(x \right)} = \sqrt{3 - x}$$$ :
$${\color{red}{\int{\left(- \sqrt{3 - x}\right)d x}}} = {\color{red}{\left(- \int{\sqrt{3 - x} d x}\right)}}$$
Soit $$$u=3 - x$$$.
Alors $$$du=\left(3 - x\right)^{\prime }dx = - dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = - du$$$.
L’intégrale devient
$$- {\color{red}{\int{\sqrt{3 - x} d x}}} = - {\color{red}{\int{\left(- \sqrt{u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \sqrt{u}$$$ :
$$- {\color{red}{\int{\left(- \sqrt{u}\right)d u}}} = - {\color{red}{\left(- \int{\sqrt{u} d u}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{1}{2}$$$ :
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Rappelons que $$$u=3 - x$$$ :
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\left(3 - x\right)}}^{\frac{3}{2}}}{3}$$
Par conséquent,
$$\int{\left(- \sqrt{3 - x}\right)d x} = \frac{2 \left(3 - x\right)^{\frac{3}{2}}}{3}$$
Ajouter la constante d'intégration :
$$\int{\left(- \sqrt{3 - x}\right)d x} = \frac{2 \left(3 - x\right)^{\frac{3}{2}}}{3}+C$$
Réponse
$$$\int \left(- \sqrt{3 - x}\right)\, dx = \frac{2 \left(3 - x\right)^{\frac{3}{2}}}{3} + C$$$A