Intégrale de $$$- 6 \ln\left(- 2 x\right)$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- 6 \ln\left(- 2 x\right)\right)\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=-6$$$ et $$$f{\left(x \right)} = \ln{\left(- 2 x \right)}$$$ :
$${\color{red}{\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x}}} = {\color{red}{\left(- 6 \int{\ln{\left(- 2 x \right)} d x}\right)}}$$
Soit $$$u=- 2 x$$$.
Alors $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = - \frac{du}{2}$$$.
L’intégrale peut être réécrite sous la forme
$$- 6 {\color{red}{\int{\ln{\left(- 2 x \right)} d x}}} = - 6 {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=- \frac{1}{2}$$$ et $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ :
$$- 6 {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}} = - 6 {\color{red}{\left(- \frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}$$
Pour l’intégrale $$$\int{\ln{\left(u \right)} d u}$$$, utilisez l’intégration par parties $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Soient $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ et $$$\operatorname{dv}=du$$$.
Donc $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d u}=u$$$ (les étapes peuvent être consultées »).
Ainsi,
$$3 {\color{red}{\int{\ln{\left(u \right)} d u}}}=3 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=3 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$3 u \ln{\left(u \right)} - 3 {\color{red}{\int{1 d u}}} = 3 u \ln{\left(u \right)} - 3 {\color{red}{u}}$$
Rappelons que $$$u=- 2 x$$$ :
$$- 3 {\color{red}{u}} + 3 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 3 {\color{red}{\left(- 2 x\right)}} + 3 {\color{red}{\left(- 2 x\right)}} \ln{\left({\color{red}{\left(- 2 x\right)}} \right)}$$
Par conséquent,
$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = - 6 x \ln{\left(- 2 x \right)} + 6 x$$
Simplifier:
$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = 6 x \left(- \ln{\left(- x \right)} - \ln{\left(2 \right)} + 1\right)$$
Ajouter la constante d'intégration :
$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = 6 x \left(- \ln{\left(- x \right)} - \ln{\left(2 \right)} + 1\right)+C$$
Réponse
$$$\int \left(- 6 \ln\left(- 2 x\right)\right)\, dx = 6 x \left(- \ln\left(- x\right) - \ln\left(2\right) + 1\right) + C$$$A