Intégrale de $$$- 8 a l t \left(t - 1\right) e^{- 5 t}$$$ par rapport à $$$t$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)\, dt$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=- 8 a l$$$ et $$$f{\left(t \right)} = t \left(t - 1\right) e^{- 5 t}$$$ :
$${\color{red}{\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t}}} = {\color{red}{\left(- 8 a l \int{t \left(t - 1\right) e^{- 5 t} d t}\right)}}$$
Pour l’intégrale $$$\int{t \left(t - 1\right) e^{- 5 t} d t}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=t \left(t - 1\right)$$$ et $$$\operatorname{dv}=e^{- 5 t} dt$$$.
Donc $$$\operatorname{du}=\left(t \left(t - 1\right)\right)^{\prime }dt=\left(2 t - 1\right) dt$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$ (les étapes peuvent être consultées »).
L’intégrale devient
$$- 8 a l {\color{red}{\int{t \left(t - 1\right) e^{- 5 t} d t}}}=- 8 a l {\color{red}{\left(t \left(t - 1\right) \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot \left(2 t - 1\right) d t}\right)}}=- 8 a l {\color{red}{\left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \int{\frac{\left(1 - 2 t\right) e^{- 5 t}}{5} d t}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{1}{5}$$$ et $$$f{\left(t \right)} = \left(1 - 2 t\right) e^{- 5 t}$$$ :
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - {\color{red}{\int{\frac{\left(1 - 2 t\right) e^{- 5 t}}{5} d t}}}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - {\color{red}{\left(\frac{\int{\left(1 - 2 t\right) e^{- 5 t} d t}}{5}\right)}}\right)$$
Pour l’intégrale $$$\int{\left(1 - 2 t\right) e^{- 5 t} d t}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=1 - 2 t$$$ et $$$\operatorname{dv}=e^{- 5 t} dt$$$.
Donc $$$\operatorname{du}=\left(1 - 2 t\right)^{\prime }dt=- 2 dt$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$ (les étapes peuvent être consultées »).
Ainsi,
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\int{\left(1 - 2 t\right) e^{- 5 t} d t}}}}{5}\right)=- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\left(\left(1 - 2 t\right) \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot \left(-2\right) d t}\right)}}}{5}\right)=- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\left(- \frac{\left(1 - 2 t\right) e^{- 5 t}}{5} - \int{\frac{2 e^{- 5 t}}{5} d t}\right)}}}{5}\right)$$
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{2}{5}$$$ et $$$f{\left(t \right)} = e^{- 5 t}$$$ :
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{{\color{red}{\int{\frac{2 e^{- 5 t}}{5} d t}}}}{5}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{{\color{red}{\left(\frac{2 \int{e^{- 5 t} d t}}{5}\right)}}}{5}\right)$$
Soit $$$u=- 5 t$$$.
Alors $$$du=\left(- 5 t\right)^{\prime }dt = - 5 dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$dt = - \frac{du}{5}$$$.
Ainsi,
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{e^{- 5 t} d t}}}}{25}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{25}\right)$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=- \frac{1}{5}$$$ et $$$f{\left(u \right)} = e^{u}$$$ :
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{25}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\left(- \frac{\int{e^{u} d u}}{5}\right)}}}{25}\right)$$
L'intégrale de la fonction exponentielle vaut $$$\int{e^{u} d u} = e^{u}$$$ :
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{125}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 {\color{red}{e^{u}}}}{125}\right)$$
Rappelons que $$$u=- 5 t$$$ :
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{{\color{red}{u}}}}{125}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{{\color{red}{\left(- 5 t\right)}}}}{125}\right)$$
Par conséquent,
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{- 5 t}}{125}\right)$$
Simplifier:
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125}$$
Ajouter la constante d'intégration :
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125}+C$$
Réponse
$$$\int \left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)\, dt = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125} + C$$$A