Intégrale de $$$- x^{6} - x^{3} - 111 i x^{3}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- x^{6} - x^{3} - 111 i x^{3}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x}}} = {\color{red}{\left(- \int{x^{3} d x} - \int{x^{6} d x} - \int{111 i x^{3} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=3$$$ :
$$- \int{x^{6} d x} - \int{111 i x^{3} d x} - {\color{red}{\int{x^{3} d x}}}=- \int{x^{6} d x} - \int{111 i x^{3} d x} - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \int{x^{6} d x} - \int{111 i x^{3} d x} - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=6$$$ :
$$- \frac{x^{4}}{4} - \int{111 i x^{3} d x} - {\color{red}{\int{x^{6} d x}}}=- \frac{x^{4}}{4} - \int{111 i x^{3} d x} - {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- \frac{x^{4}}{4} - \int{111 i x^{3} d x} - {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=111 i$$$ et $$$f{\left(x \right)} = x^{3}$$$ :
$$- \frac{x^{7}}{7} - \frac{x^{4}}{4} - {\color{red}{\int{111 i x^{3} d x}}} = - \frac{x^{7}}{7} - \frac{x^{4}}{4} - {\color{red}{\left(111 i \int{x^{3} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=3$$$ :
$$- \frac{x^{7}}{7} - \frac{x^{4}}{4} - 111 i {\color{red}{\int{x^{3} d x}}}=- \frac{x^{7}}{7} - \frac{x^{4}}{4} - 111 i {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{x^{7}}{7} - \frac{x^{4}}{4} - 111 i {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Par conséquent,
$$\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x} = - \frac{x^{7}}{7} - \frac{x^{4}}{4} - \frac{111 i x^{4}}{4}$$
Simplifier:
$$\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x} = \frac{x^{4} \left(- 4 x^{3} - 7 - 777 i\right)}{28}$$
Ajouter la constante d'intégration :
$$\int{\left(- x^{6} - x^{3} - 111 i x^{3}\right)d x} = \frac{x^{4} \left(- 4 x^{3} - 7 - 777 i\right)}{28}+C$$
Réponse
$$$\int \left(- x^{6} - x^{3} - 111 i x^{3}\right)\, dx = \frac{x^{4} \left(- 4 x^{3} - 7 - 777 i\right)}{28} + C$$$A