Intégrale de $$$\frac{x^{2}}{x - 7}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{x^{2}}{x - 7}\, dx$$$.
Solution
Puisque le degré du numérateur n’est pas inférieur à celui du dénominateur, effectuez la division euclidienne des polynômes (voir les étapes »):
$${\color{red}{\int{\frac{x^{2}}{x - 7} d x}}} = {\color{red}{\int{\left(x + 7 + \frac{49}{x - 7}\right)d x}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(x + 7 + \frac{49}{x - 7}\right)d x}}} = {\color{red}{\left(\int{7 d x} + \int{x d x} + \int{\frac{49}{x - 7} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=7$$$:
$$\int{x d x} + \int{\frac{49}{x - 7} d x} + {\color{red}{\int{7 d x}}} = \int{x d x} + \int{\frac{49}{x - 7} d x} + {\color{red}{\left(7 x\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\int{x d x}}}=7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=49$$$ et $$$f{\left(x \right)} = \frac{1}{x - 7}$$$ :
$$\frac{x^{2}}{2} + 7 x + {\color{red}{\int{\frac{49}{x - 7} d x}}} = \frac{x^{2}}{2} + 7 x + {\color{red}{\left(49 \int{\frac{1}{x - 7} d x}\right)}}$$
Soit $$$u=x - 7$$$.
Alors $$$du=\left(x - 7\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
L’intégrale peut être réécrite sous la forme
$$\frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{x - 7} d x}}} = \frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{u} d u}}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{2}}{2} + 7 x + 49 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=x - 7$$$ :
$$\frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{{\color{red}{\left(x - 7\right)}}}\right| \right)}$$
Par conséquent,
$$\int{\frac{x^{2}}{x - 7} d x} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{x - 7}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{x^{2}}{x - 7} d x} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{x - 7}\right| \right)}+C$$
Réponse
$$$\int \frac{x^{2}}{x - 7}\, dx = \left(\frac{x^{2}}{2} + 7 x + 49 \ln\left(\left|{x - 7}\right|\right)\right) + C$$$A