Intégrale de $$$\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}\, dt$$$.
Solution
Soit $$$u=\cos{\left(t \right)}$$$.
Alors $$$du=\left(\cos{\left(t \right)}\right)^{\prime }dt = - \sin{\left(t \right)} dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sin{\left(t \right)} dt = - du$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t}}} = {\color{red}{\int{\left(- \sqrt{u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \sqrt{u}$$$ :
$${\color{red}{\int{\left(- \sqrt{u}\right)d u}}} = {\color{red}{\left(- \int{\sqrt{u} d u}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{1}{2}$$$ :
$$- {\color{red}{\int{\sqrt{u} d u}}}=- {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Rappelons que $$$u=\cos{\left(t \right)}$$$ :
$$- \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - \frac{2 {\color{red}{\cos{\left(t \right)}}}^{\frac{3}{2}}}{3}$$
Par conséquent,
$$\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t} = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3}$$
Ajouter la constante d'intégration :
$$\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t} = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3}+C$$
Réponse
$$$\int \sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}\, dt = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3} + C$$$A