Intégrale de $$$8498000 - 212450 t$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(8498000 - 212450 t\right)\, dt$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(8498000 - 212450 t\right)d t}}} = {\color{red}{\left(\int{8498000 d t} - \int{212450 t d t}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dt = c t$$$ avec $$$c=8498000$$$:
$$- \int{212450 t d t} + {\color{red}{\int{8498000 d t}}} = - \int{212450 t d t} + {\color{red}{\left(8498000 t\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=212450$$$ et $$$f{\left(t \right)} = t$$$ :
$$8498000 t - {\color{red}{\int{212450 t d t}}} = 8498000 t - {\color{red}{\left(212450 \int{t d t}\right)}}$$
Appliquer la règle de puissance $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$8498000 t - 212450 {\color{red}{\int{t d t}}}=8498000 t - 212450 {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=8498000 t - 212450 {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Par conséquent,
$$\int{\left(8498000 - 212450 t\right)d t} = - 106225 t^{2} + 8498000 t$$
Simplifier:
$$\int{\left(8498000 - 212450 t\right)d t} = 106225 t \left(80 - t\right)$$
Ajouter la constante d'intégration :
$$\int{\left(8498000 - 212450 t\right)d t} = 106225 t \left(80 - t\right)+C$$
Réponse
$$$\int \left(8498000 - 212450 t\right)\, dt = 106225 t \left(80 - t\right) + C$$$A