Intégrale de $$$\frac{\sqrt{7}}{7 \sqrt{x}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sqrt{7}}{7 \sqrt{x}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{\sqrt{7}}{7}$$$ et $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$ :
$${\color{red}{\int{\frac{\sqrt{7}}{7 \sqrt{x}} d x}}} = {\color{red}{\left(\frac{\sqrt{7} \int{\frac{1}{\sqrt{x}} d x}}{7}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=- \frac{1}{2}$$$ :
$$\frac{\sqrt{7} {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{7}=\frac{\sqrt{7} {\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{7}=\frac{\sqrt{7} {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{7}=\frac{\sqrt{7} {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{7}=\frac{\sqrt{7} {\color{red}{\left(2 \sqrt{x}\right)}}}{7}$$
Par conséquent,
$$\int{\frac{\sqrt{7}}{7 \sqrt{x}} d x} = \frac{2 \sqrt{7} \sqrt{x}}{7}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sqrt{7}}{7 \sqrt{x}} d x} = \frac{2 \sqrt{7} \sqrt{x}}{7}+C$$
Réponse
$$$\int \frac{\sqrt{7}}{7 \sqrt{x}}\, dx = \frac{2 \sqrt{7} \sqrt{x}}{7} + C$$$A