Intégrale de $$$\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx$$$.
Solution
Multipliez le numérateur et le dénominateur par $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ et convertissez $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ en $$$\frac{1}{\tan^{2}{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$
Extraire deux cosinus et les réécrire en fonction de la sécante en utilisant la formule $$$\frac{1}{\cos^{2}{\left(x \right)}}=\sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$
Réécrivez le cosinus en fonction de la tangente à l’aide de la formule $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$:
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$
Soit $$$u=\tan{\left(x \right)}$$$.
Alors $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sec^{2}{\left(x \right)} dx = du$$$.
Par conséquent,
$${\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}}$$
Expand the expression:
$${\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}} = {\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u^{2}} d u}\right)}}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$\int{\frac{1}{u^{2}} d u} + {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2}} d u} + {\color{red}{u}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-2$$$ :
$$u + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=u + {\color{red}{\int{u^{-2} d u}}}=u + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=u + {\color{red}{\left(- u^{-1}\right)}}=u + {\color{red}{\left(- \frac{1}{u}\right)}}$$
Rappelons que $$$u=\tan{\left(x \right)}$$$ :
$$- {\color{red}{u}}^{-1} + {\color{red}{u}} = - {\color{red}{\tan{\left(x \right)}}}^{-1} + {\color{red}{\tan{\left(x \right)}}}$$
Par conséquent,
$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}+C$$
Réponse
$$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx = \left(\tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}\right) + C$$$A