Intégrale de $$$- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx$$$.
Solution
L’entrée est réécrite : $$$\int{\left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)d x}=\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}$$$.
Soit $$$u=x^{2}$$$.
Alors $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{2}$$$.
Donc,
$${\color{red}{\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}}} = {\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=- \frac{1}{10}$$$ et $$$f{\left(u \right)} = \left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}$$$ :
$${\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}} = {\color{red}{\left(- \frac{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}{10}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{2^{\frac{2}{5}}}{2}$$$:
$$- \frac{{\color{red}{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}}}{10} = - \frac{{\color{red}{\frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{\ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}}}}{10}$$
Rappelons que $$$u=x^{2}$$$ :
$$- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{u}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{x^{2}}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$
Par conséquent,
$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$
Simplifier:
$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}$$
Ajouter la constante d'intégration :
$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}+C$$
Réponse
$$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln\left(2\right)} + C$$$A