Intégrale de $$$\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=8$$$ et $$$f{\left(x \right)} = \frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}$$$ :
$${\color{red}{\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(8 \int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}\right)}}$$
Soit $$$u=\operatorname{acos}{\left(x \right)}$$$.
Alors $$$du=\left(\operatorname{acos}{\left(x \right)}\right)^{\prime }dx = - \frac{1}{\sqrt{1 - x^{2}}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{\sqrt{1 - x^{2}}} = - du$$$.
L’intégrale devient
$$8 {\color{red}{\int{\frac{e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x}}} = 8 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = e^{u}$$$ :
$$8 {\color{red}{\int{\left(- e^{u}\right)d u}}} = 8 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
L'intégrale de la fonction exponentielle vaut $$$\int{e^{u} d u} = e^{u}$$$ :
$$- 8 {\color{red}{\int{e^{u} d u}}} = - 8 {\color{red}{e^{u}}}$$
Rappelons que $$$u=\operatorname{acos}{\left(x \right)}$$$ :
$$- 8 e^{{\color{red}{u}}} = - 8 e^{{\color{red}{\operatorname{acos}{\left(x \right)}}}}$$
Par conséquent,
$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}$$
Ajouter la constante d'intégration :
$$\int{\frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}} d x} = - 8 e^{\operatorname{acos}{\left(x \right)}}+C$$
Réponse
$$$\int \frac{8 e^{\operatorname{acos}{\left(x \right)}}}{\sqrt{1 - x^{2}}}\, dx = - 8 e^{\operatorname{acos}{\left(x \right)}} + C$$$A