Intégrale de $$$\frac{\ln^{2}\left(x\right)}{x}$$$ par rapport à $$$t$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt$$$.
Solution
Appliquez la règle de la constante $$$\int c\, dt = c t$$$ avec $$$c=\frac{\ln{\left(x \right)}^{2}}{x}$$$:
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d t}}} = {\color{red}{\frac{t \ln{\left(x \right)}^{2}}{x}}}$$
Par conséquent,
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}$$
Ajouter la constante d'intégration :
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}+C$$
Réponse
$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt = \frac{t \ln^{2}\left(x\right)}{x} + C$$$A