Intégrale de $$$\frac{\cos{\left(\frac{1}{x} \right)}}{x^{3}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\cos{\left(\frac{1}{x} \right)}}{x^{3}}\, dx$$$.
Solution
Soit $$$u=\frac{1}{x}$$$.
Alors $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{x^{2}} = - du$$$.
L’intégrale devient
$${\color{red}{\int{\frac{\cos{\left(\frac{1}{x} \right)}}{x^{3}} d x}}} = {\color{red}{\int{\left(- u \cos{\left(u \right)}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = u \cos{\left(u \right)}$$$ :
$${\color{red}{\int{\left(- u \cos{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{u \cos{\left(u \right)} d u}\right)}}$$
Pour l’intégrale $$$\int{u \cos{\left(u \right)} d u}$$$, utilisez l’intégration par parties $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Soient $$$\operatorname{\kappa}=u$$$ et $$$\operatorname{dv}=\cos{\left(u \right)} du$$$.
Donc $$$\operatorname{d\kappa}=\left(u\right)^{\prime }du=1 du$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{\cos{\left(u \right)} d u}=\sin{\left(u \right)}$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$$- {\color{red}{\int{u \cos{\left(u \right)} d u}}}=- {\color{red}{\left(u \cdot \sin{\left(u \right)}-\int{\sin{\left(u \right)} \cdot 1 d u}\right)}}=- {\color{red}{\left(u \sin{\left(u \right)} - \int{\sin{\left(u \right)} d u}\right)}}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$- u \sin{\left(u \right)} + {\color{red}{\int{\sin{\left(u \right)} d u}}} = - u \sin{\left(u \right)} + {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Rappelons que $$$u=\frac{1}{x}$$$ :
$$- \cos{\left({\color{red}{u}} \right)} - {\color{red}{u}} \sin{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\frac{1}{x}}} \right)} - {\color{red}{\frac{1}{x}}} \sin{\left({\color{red}{\frac{1}{x}}} \right)}$$
Par conséquent,
$$\int{\frac{\cos{\left(\frac{1}{x} \right)}}{x^{3}} d x} = - \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}$$
Ajouter la constante d'intégration :
$$\int{\frac{\cos{\left(\frac{1}{x} \right)}}{x^{3}} d x} = - \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}+C$$
Réponse
$$$\int \frac{\cos{\left(\frac{1}{x} \right)}}{x^{3}}\, dx = \left(- \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}\right) + C$$$A