Intégrale de $$$\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{\pi}{40}$$$ et $$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}$$$ :
$${\color{red}{\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x}}} = {\color{red}{\left(\frac{\pi \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}{40}\right)}}$$
Soit $$$u=\sin{\left(x \right)}$$$.
Alors $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\cos{\left(x \right)} dx = du$$$.
L’intégrale devient
$$\frac{\pi {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}}}{40} = \frac{\pi {\color{red}{\int{u d u}}}}{40}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$\frac{\pi {\color{red}{\int{u d u}}}}{40}=\frac{\pi {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{40}=\frac{\pi {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{40}$$
Rappelons que $$$u=\sin{\left(x \right)}$$$ :
$$\frac{\pi {\color{red}{u}}^{2}}{80} = \frac{\pi {\color{red}{\sin{\left(x \right)}}}^{2}}{80}$$
Par conséquent,
$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}$$
Ajouter la constante d'intégration :
$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}+C$$
Réponse
$$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx = \frac{\pi \sin^{2}{\left(x \right)}}{80} + C$$$A