Intégrale de $$$\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}\, dt$$$.

Solution

Réécrivez $$$\sin\left(2 t \right)\cos\left(4 t \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 t$$$ et $$$\beta=4 t$$$:

$${\color{red}{\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t}}} = {\color{red}{\int{\frac{\pi \left(- \frac{\sin{\left(2 t \right)}}{2} + \frac{\sin{\left(6 t \right)}}{2}\right) \sin{\left(4 t \right)}}{20} d t}}}$$

Développez l'expression:

$${\color{red}{\int{\frac{\pi \left(- \frac{\sin{\left(2 t \right)}}{2} + \frac{\sin{\left(6 t \right)}}{2}\right) \sin{\left(4 t \right)}}{20} d t}}} = {\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{40} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{40}\right)d t}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(t \right)} = - \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}$$$ :

$${\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{40} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{40}\right)d t}}} = {\color{red}{\left(\frac{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}\right)d t}}{2}\right)}}$$

Intégrez terme à terme:

$$\frac{{\color{red}{\int{\left(- \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} + \frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20}\right)d t}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} d t} + \int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}\right)}}}{2}$$

Réécrivez $$$\sin\left(2 t \right)\sin\left(4 t \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 t$$$ et $$$\beta=4 t$$$:

$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)}}{20} d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)}{20} d t}}}}{2}$$

Développez l'expression:

$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)}{20} d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(6 t \right)}}{40}\right)d t}}}}{2}$$

Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(t \right)} = \frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}$$$ :

$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(6 t \right)}}{40}\right)d t}}}}{2} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}\right)d t}}{2}\right)}}}{2}$$

Intégrez terme à terme:

$$\frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(6 t \right)}}{20}\right)d t}}}}{4} = \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t} - \int{\frac{\pi \cos{\left(6 t \right)}}{20} d t}\right)}}}{4}$$

Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{\pi}{20}$$$ et $$$f{\left(t \right)} = \cos{\left(6 t \right)}$$$ :

$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{{\color{red}{\int{\frac{\pi \cos{\left(6 t \right)}}{20} d t}}}}{4} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(6 t \right)} d t}}{20}\right)}}}{4}$$

Soit $$$u=6 t$$$.

Alors $$$du=\left(6 t\right)^{\prime }dt = 6 dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$dt = \frac{du}{6}$$$.

Ainsi,

$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\cos{\left(6 t \right)} d t}}}}{80} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{80}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{6}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :

$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{80} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{80}$$

L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :

$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{480} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{480}$$

Rappelons que $$$u=6 t$$$ :

$$- \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi \sin{\left({\color{red}{u}} \right)}}{480} = - \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} + \frac{\pi \sin{\left({\color{red}{\left(6 t\right)}} \right)}}{480}$$

Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{\pi}{20}$$$ et $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$ :

$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}}}{4} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(2 t \right)} d t}}{20}\right)}}}{4}$$

Soit $$$u=2 t$$$.

Alors $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$dt = \frac{du}{2}$$$.

L’intégrale peut être réécrite sous la forme

$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{80} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{80}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :

$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{80} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{80}$$

L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :

$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{160} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{160}$$

Rappelons que $$$u=2 t$$$ :

$$\frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi \sin{\left({\color{red}{u}} \right)}}{160} = \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}{2} - \frac{\pi \sin{\left({\color{red}{\left(2 t\right)}} \right)}}{160}$$

Réécrivez $$$\sin\left(4 t \right)\sin\left(6 t \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ avec $$$\alpha=4 t$$$ et $$$\beta=6 t$$$:

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \sin{\left(4 t \right)} \sin{\left(6 t \right)}}{20} d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(10 t \right)}}{2}\right)}{20} d t}}}}{2}$$

Développez l'expression:

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\frac{\pi \left(\frac{\cos{\left(2 t \right)}}{2} - \frac{\cos{\left(10 t \right)}}{2}\right)}{20} d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(10 t \right)}}{40}\right)d t}}}}{2}$$

Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(t \right)} = \frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}$$$ :

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{40} - \frac{\pi \cos{\left(10 t \right)}}{40}\right)d t}}}}{2} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\left(\frac{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}\right)d t}}{2}\right)}}}{2}$$

Intégrez terme à terme:

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\int{\left(\frac{\pi \cos{\left(2 t \right)}}{20} - \frac{\pi \cos{\left(10 t \right)}}{20}\right)d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{{\color{red}{\left(\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t} - \int{\frac{\pi \cos{\left(10 t \right)}}{20} d t}\right)}}}{4}$$

Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{\pi}{20}$$$ et $$$f{\left(t \right)} = \cos{\left(10 t \right)}$$$ :

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{{\color{red}{\int{\frac{\pi \cos{\left(10 t \right)}}{20} d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(10 t \right)} d t}}{20}\right)}}}{4}$$

Soit $$$u=10 t$$$.

Alors $$$du=\left(10 t\right)^{\prime }dt = 10 dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$dt = \frac{du}{10}$$$.

Ainsi,

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\cos{\left(10 t \right)} d t}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{10} d u}}}}{80}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{10}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{10} d u}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{10}\right)}}}{80}$$

L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{800} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{800}$$

Rappelons que $$$u=10 t$$$ :

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi \sin{\left({\color{red}{u}} \right)}}{800} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} + \frac{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}{4} - \frac{\pi \sin{\left({\color{red}{\left(10 t\right)}} \right)}}{800}$$

Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{\pi}{20}$$$ et $$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$ :

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{{\color{red}{\int{\frac{\pi \cos{\left(2 t \right)}}{20} d t}}}}{4} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{{\color{red}{\left(\frac{\pi \int{\cos{\left(2 t \right)} d t}}{20}\right)}}}{4}$$

L'intégrale $$$\int{\cos{\left(2 t \right)} d t}$$$ a déjà été calculée :

$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$

Par conséquent,

$$- \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{\pi {\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{80} = - \frac{\pi \sin{\left(2 t \right)}}{160} + \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800} + \frac{\pi {\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{80}$$

Par conséquent,

$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \sin{\left(6 t \right)}}{480} - \frac{\pi \sin{\left(10 t \right)}}{800}$$

Simplifier:

$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400}$$

Ajouter la constante d'intégration :

$$\int{\frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20} d t} = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400}+C$$

Réponse

$$$\int \frac{\pi \sin{\left(2 t \right)} \sin{\left(4 t \right)} \cos{\left(4 t \right)}}{20}\, dt = \frac{\pi \left(5 \sin{\left(6 t \right)} - 3 \sin{\left(10 t \right)}\right)}{2400} + C$$$A


Please try a new game Rotatly