Intégrale de $$$\frac{x^{21}}{x^{2} - 4}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\frac{x^{21}}{x^{2} - 4}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \frac{x^{21}}{x^{2} - 4}\, dx$$$.

Solution

Puisque le degré du numérateur n’est pas inférieur à celui du dénominateur, effectuez la division euclidienne des polynômes (voir les étapes »):

$${\color{red}{\int{\frac{x^{21}}{x^{2} - 4} d x}}} = {\color{red}{\int{\left(x^{19} + 4 x^{17} + 16 x^{15} + 64 x^{13} + 256 x^{11} + 1024 x^{9} + 4096 x^{7} + 16384 x^{5} + 65536 x^{3} + 262144 x + \frac{1048576 x}{x^{2} - 4}\right)d x}}}$$

Intégrez terme à terme:

$${\color{red}{\int{\left(x^{19} + 4 x^{17} + 16 x^{15} + 64 x^{13} + 256 x^{11} + 1024 x^{9} + 4096 x^{7} + 16384 x^{5} + 65536 x^{3} + 262144 x + \frac{1048576 x}{x^{2} - 4}\right)d x}}} = {\color{red}{\left(\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{x^{19} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=19$$$ :

$$\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{x^{19} d x}}}=\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\frac{x^{1 + 19}}{1 + 19}}}=\int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{4 x^{17} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(\frac{x^{20}}{20}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = x^{17}$$$ :

$$\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{4 x^{17} d x}}} = \frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(4 \int{x^{17} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=17$$$ :

$$\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4 {\color{red}{\int{x^{17} d x}}}=\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4 {\color{red}{\frac{x^{1 + 17}}{1 + 17}}}=\frac{x^{20}}{20} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{16 x^{15} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4 {\color{red}{\left(\frac{x^{18}}{18}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=16$$$ et $$$f{\left(x \right)} = x^{15}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{16 x^{15} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(16 \int{x^{15} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=15$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16 {\color{red}{\int{x^{15} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16 {\color{red}{\frac{x^{1 + 15}}{1 + 15}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{64 x^{13} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16 {\color{red}{\left(\frac{x^{16}}{16}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=64$$$ et $$$f{\left(x \right)} = x^{13}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{64 x^{13} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(64 \int{x^{13} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=13$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 64 {\color{red}{\int{x^{13} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 64 {\color{red}{\frac{x^{1 + 13}}{1 + 13}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{256 x^{11} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 64 {\color{red}{\left(\frac{x^{14}}{14}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=256$$$ et $$$f{\left(x \right)} = x^{11}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{256 x^{11} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(256 \int{x^{11} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=11$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 256 {\color{red}{\int{x^{11} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 256 {\color{red}{\frac{x^{1 + 11}}{1 + 11}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{1024 x^{9} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 256 {\color{red}{\left(\frac{x^{12}}{12}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=1024$$$ et $$$f{\left(x \right)} = x^{9}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{1024 x^{9} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(1024 \int{x^{9} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=9$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 1024 {\color{red}{\int{x^{9} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 1024 {\color{red}{\frac{x^{1 + 9}}{1 + 9}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{4096 x^{7} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 1024 {\color{red}{\left(\frac{x^{10}}{10}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4096$$$ et $$$f{\left(x \right)} = x^{7}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{4096 x^{7} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(4096 \int{x^{7} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=7$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4096 {\color{red}{\int{x^{7} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4096 {\color{red}{\frac{x^{1 + 7}}{1 + 7}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{16384 x^{5} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 4096 {\color{red}{\left(\frac{x^{8}}{8}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=16384$$$ et $$$f{\left(x \right)} = x^{5}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{16384 x^{5} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(16384 \int{x^{5} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=5$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16384 {\color{red}{\int{x^{5} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16384 {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \int{262144 x d x} + \int{65536 x^{3} d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 16384 {\color{red}{\left(\frac{x^{6}}{6}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=65536$$$ et $$$f{\left(x \right)} = x^{3}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{65536 x^{3} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(65536 \int{x^{3} d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=3$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 65536 {\color{red}{\int{x^{3} d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 65536 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + \int{262144 x d x} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 65536 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=262144$$$ et $$$f{\left(x \right)} = x$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\int{262144 x d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + {\color{red}{\left(262144 \int{x d x}\right)}}$$

Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 262144 {\color{red}{\int{x d x}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 262144 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + \int{\frac{1048576 x}{x^{2} - 4} d x} + 262144 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Soit $$$u=x^{2} - 4$$$.

Alors $$$du=\left(x^{2} - 4\right)^{\prime }dx = 2 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{2}$$$.

Par conséquent,

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\int{\frac{1048576 x}{x^{2} - 4} d x}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\int{\frac{524288}{u} d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=524288$$$ et $$$f{\left(u \right)} = \frac{1}{u}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\int{\frac{524288}{u} d u}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + {\color{red}{\left(524288 \int{\frac{1}{u} d u}\right)}}$$

L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Rappelons que $$$u=x^{2} - 4$$$ :

$$\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{{\color{red}{\left(x^{2} - 4\right)}}}\right| \right)}$$

Par conséquent,

$$\int{\frac{x^{21}}{x^{2} - 4} d x} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{x^{2} - 4}\right| \right)}$$

Ajouter la constante d'intégration :

$$\int{\frac{x^{21}}{x^{2} - 4} d x} = \frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln{\left(\left|{x^{2} - 4}\right| \right)}+C$$

Réponse

$$$\int \frac{x^{21}}{x^{2} - 4}\, dx = \left(\frac{x^{20}}{20} + \frac{2 x^{18}}{9} + x^{16} + \frac{32 x^{14}}{7} + \frac{64 x^{12}}{3} + \frac{512 x^{10}}{5} + 512 x^{8} + \frac{8192 x^{6}}{3} + 16384 x^{4} + 131072 x^{2} + 524288 \ln\left(\left|{x^{2} - 4}\right|\right)\right) + C$$$A


Please try a new game Rotatly