Intégrale de $$$\frac{x^{2}}{x^{4} - 2 x^{2} - 8}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{x^{2}}{x^{4} - 2 x^{2} - 8}\, dx$$$.
Solution
Effectuer la décomposition en fractions partielles (les étapes peuvent être vues »):
$${\color{red}{\int{\frac{x^{2}}{x^{4} - 2 x^{2} - 8} d x}}} = {\color{red}{\int{\left(\frac{1}{3 \left(x^{2} + 2\right)} - \frac{1}{6 \left(x + 2\right)} + \frac{1}{6 \left(x - 2\right)}\right)d x}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(\frac{1}{3 \left(x^{2} + 2\right)} - \frac{1}{6 \left(x + 2\right)} + \frac{1}{6 \left(x - 2\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{6 \left(x - 2\right)} d x} - \int{\frac{1}{6 \left(x + 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{6}$$$ et $$$f{\left(x \right)} = \frac{1}{x + 2}$$$ :
$$\int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x} - {\color{red}{\int{\frac{1}{6 \left(x + 2\right)} d x}}} = \int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x + 2} d x}}{6}\right)}}$$
Soit $$$u=x + 2$$$.
Alors $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Ainsi,
$$\int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 2} d x}}}}{6} = \int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6} = \int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$
Rappelons que $$$u=x + 2$$$ :
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(x + 2\right)}}}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \int{\frac{1}{3 \left(x^{2} + 2\right)} d x}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{3}$$$ et $$$f{\left(x \right)} = \frac{1}{x^{2} + 2}$$$ :
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + {\color{red}{\int{\frac{1}{3 \left(x^{2} + 2\right)} d x}}} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x^{2} + 2} d x}}{3}\right)}}$$
Soit $$$u=\frac{\sqrt{2}}{2} x$$$.
Alors $$$du=\left(\frac{\sqrt{2}}{2} x\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \sqrt{2} du$$$.
L’intégrale peut être réécrite sous la forme
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x^{2} + 2} d x}}}}{3} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{{\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}}}{3}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{\sqrt{2}}{2}$$$ et $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$ :
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{{\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}}}{3} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{{\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}}{3}$$
L’intégrale de $$$\frac{1}{u^{2} + 1}$$$ est $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$ :
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{6} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{\sqrt{2} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{6}$$
Rappelons que $$$u=\frac{\sqrt{2}}{2} x$$$ :
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{\sqrt{2} \operatorname{atan}{\left({\color{red}{u}} \right)}}{6} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \int{\frac{1}{6 \left(x - 2\right)} d x} + \frac{\sqrt{2} \operatorname{atan}{\left({\color{red}{\frac{\sqrt{2}}{2} x}} \right)}}{6}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{6}$$$ et $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ :
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6} + {\color{red}{\int{\frac{1}{6 \left(x - 2\right)} d x}}} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6} + {\color{red}{\left(\frac{\int{\frac{1}{x - 2} d x}}{6}\right)}}$$
Soit $$$u=x - 2$$$.
Alors $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Par conséquent,
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6} + \frac{{\color{red}{\int{\frac{1}{x - 2} d x}}}}{6} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{6} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$
Rappelons que $$$u=x - 2$$$ :
$$- \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6} = - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2}}{2} x \right)}}{6}$$
Par conséquent,
$$\int{\frac{x^{2}}{x^{4} - 2 x^{2} - 8} d x} = \frac{\ln{\left(\left|{x - 2}\right| \right)}}{6} - \frac{\ln{\left(\left|{x + 2}\right| \right)}}{6} + \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{6}$$
Simplifier:
$$\int{\frac{x^{2}}{x^{4} - 2 x^{2} - 8} d x} = \frac{\ln{\left(\left|{x - 2}\right| \right)} - \ln{\left(\left|{x + 2}\right| \right)} + \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{6}$$
Ajouter la constante d'intégration :
$$\int{\frac{x^{2}}{x^{4} - 2 x^{2} - 8} d x} = \frac{\ln{\left(\left|{x - 2}\right| \right)} - \ln{\left(\left|{x + 2}\right| \right)} + \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{6}+C$$
Réponse
$$$\int \frac{x^{2}}{x^{4} - 2 x^{2} - 8}\, dx = \frac{\ln\left(\left|{x - 2}\right|\right) - \ln\left(\left|{x + 2}\right|\right) + \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{6} + C$$$A