Intégrale de $$$\frac{\sqrt{1 - x}}{\sqrt{x}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sqrt{1 - x}}{\sqrt{x}}\, dx$$$.
Solution
Soit $$$u=\sqrt{x}$$$.
Alors $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Donc,
$${\color{red}{\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=2$$$ et $$$f{\left(u \right)} = \sqrt{1 - u^{2}}$$$ :
$${\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}} = {\color{red}{\left(2 \int{\sqrt{1 - u^{2}} d u}\right)}}$$
Soit $$$u=\sin{\left(v \right)}$$$.
Alors $$$du=\left(\sin{\left(v \right)}\right)^{\prime }dv = \cos{\left(v \right)} dv$$$ (les étapes peuvent être vues »).
De plus, il s'ensuit que $$$v=\operatorname{asin}{\left(u \right)}$$$.
Donc,
$$$\sqrt{1 - u ^{2}} = \sqrt{1 - \sin^{2}{\left( v \right)}}$$$
Utilisez l'identité $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$ :
$$$\sqrt{1 - \sin^{2}{\left( v \right)}}=\sqrt{\cos^{2}{\left( v \right)}}$$$
En supposant que $$$\cos{\left( v \right)} \ge 0$$$, nous obtenons ce qui suit :
$$$\sqrt{\cos^{2}{\left( v \right)}} = \cos{\left( v \right)}$$$
L’intégrale peut se réécrire sous la forme
$$2 {\color{red}{\int{\sqrt{1 - u^{2}} d u}}} = 2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}}$$
Appliquer la formule de réduction de puissance $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ avec $$$\alpha= v $$$:
$$2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}} = 2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \cos{\left(2 v \right)} + 1$$$ :
$$2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}} = 2 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}{2}\right)}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}} = {\color{red}{\left(\int{1 d v} + \int{\cos{\left(2 v \right)} d v}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dv = c v$$$ avec $$$c=1$$$:
$$\int{\cos{\left(2 v \right)} d v} + {\color{red}{\int{1 d v}}} = \int{\cos{\left(2 v \right)} d v} + {\color{red}{v}}$$
Soit $$$w=2 v$$$.
Alors $$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$ (les étapes peuvent être vues »), et nous obtenons $$$dv = \frac{dw}{2}$$$.
L’intégrale peut être réécrite sous la forme
$$v + {\color{red}{\int{\cos{\left(2 v \right)} d v}}} = v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(w \right)} = \cos{\left(w \right)}$$$ :
$$v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}} = v + {\color{red}{\left(\frac{\int{\cos{\left(w \right)} d w}}{2}\right)}}$$
L’intégrale du cosinus est $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$ :
$$v + \frac{{\color{red}{\int{\cos{\left(w \right)} d w}}}}{2} = v + \frac{{\color{red}{\sin{\left(w \right)}}}}{2}$$
Rappelons que $$$w=2 v$$$ :
$$v + \frac{\sin{\left({\color{red}{w}} \right)}}{2} = v + \frac{\sin{\left({\color{red}{\left(2 v\right)}} \right)}}{2}$$
Rappelons que $$$v=\operatorname{asin}{\left(u \right)}$$$ :
$$\frac{\sin{\left(2 {\color{red}{v}} \right)}}{2} + {\color{red}{v}} = \frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(u \right)}}} \right)}}{2} + {\color{red}{\operatorname{asin}{\left(u \right)}}}$$
Rappelons que $$$u=\sqrt{x}$$$ :
$$\frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{u}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{u}} \right)} = \frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{\sqrt{x}}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{\sqrt{x}}} \right)}$$
Par conséquent,
$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \frac{\sin{\left(2 \operatorname{asin}{\left(\sqrt{x} \right)} \right)}}{2} + \operatorname{asin}{\left(\sqrt{x} \right)}$$
En utilisant les formules $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, simplifiez l'expression :
$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}+C$$
Réponse
$$$\int \frac{\sqrt{1 - x}}{\sqrt{x}}\, dx = \left(\sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}\right) + C$$$A