Intégrale de $$$\cos^{2}{\left(3 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos^{2}{\left(3 x \right)}\, dx$$$.
Solution
Soit $$$u=3 x$$$.
Alors $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{3}$$$.
Donc,
$${\color{red}{\int{\cos^{2}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{3} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{3}$$$ et $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$ :
$${\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\cos^{2}{\left(u \right)} d u}}{3}\right)}}$$
Appliquer la formule de réduction de puissance $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ avec $$$\alpha= u $$$:
$$\frac{{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{3}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$ :
$$\frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}}{3}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{6} = \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{6}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$\frac{\int{\cos{\left(2 u \right)} d u}}{6} + \frac{{\color{red}{\int{1 d u}}}}{6} = \frac{\int{\cos{\left(2 u \right)} d u}}{6} + \frac{{\color{red}{u}}}{6}$$
Soit $$$v=2 u$$$.
Alors $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{dv}{2}$$$.
Ainsi,
$$\frac{u}{6} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{6} = \frac{u}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{6}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ :
$$\frac{u}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{6} = \frac{u}{6} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{6}$$
L’intégrale du cosinus est $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$ :
$$\frac{u}{6} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{12} = \frac{u}{6} + \frac{{\color{red}{\sin{\left(v \right)}}}}{12}$$
Rappelons que $$$v=2 u$$$ :
$$\frac{u}{6} + \frac{\sin{\left({\color{red}{v}} \right)}}{12} = \frac{u}{6} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{12}$$
Rappelons que $$$u=3 x$$$ :
$$\frac{\sin{\left(2 {\color{red}{u}} \right)}}{12} + \frac{{\color{red}{u}}}{6} = \frac{\sin{\left(2 {\color{red}{\left(3 x\right)}} \right)}}{12} + \frac{{\color{red}{\left(3 x\right)}}}{6}$$
Par conséquent,
$$\int{\cos^{2}{\left(3 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}$$
Ajouter la constante d'intégration :
$$\int{\cos^{2}{\left(3 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}+C$$
Réponse
$$$\int \cos^{2}{\left(3 x \right)}\, dx = \left(\frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}\right) + C$$$A