Intégrale de $$$\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x}}} = {\color{red}{\left(\int{\left(9 - x^{2}\right)^{2} d x} - \int{\left(x + 7\right)^{2} d x}\right)}}$$
Expand the expression:
$$- \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(9 - x^{2}\right)^{2} d x}}} = - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(x^{4} - 18 x^{2} + 81\right)d x}}}$$
Intégrez terme à terme:
$$- \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(x^{4} - 18 x^{2} + 81\right)d x}}} = - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(\int{81 d x} - \int{18 x^{2} d x} + \int{x^{4} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=81$$$:
$$- \int{18 x^{2} d x} + \int{x^{4} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{81 d x}}} = - \int{18 x^{2} d x} + \int{x^{4} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(81 x\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=4$$$ :
$$81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{x^{4} d x}}}=81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=18$$$ et $$$f{\left(x \right)} = x^{2}$$$ :
$$\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - {\color{red}{\int{18 x^{2} d x}}} = \frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - {\color{red}{\left(18 \int{x^{2} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\int{x^{2} d x}}}=\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Soit $$$u=x + 7$$$.
Alors $$$du=\left(x + 7\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Par conséquent,
$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{\left(x + 7\right)^{2} d x}}} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{u^{2} d u}}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{u^{2} d u}}}=\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Rappelons que $$$u=x + 7$$$ :
$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{{\color{red}{u}}^{3}}{3} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{{\color{red}{\left(x + 7\right)}}^{3}}{3}$$
Par conséquent,
$$\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}$$
Ajouter la constante d'intégration :
$$\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}+C$$
Réponse
$$$\int \left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)\, dx = \left(\frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}\right) + C$$$A