Intégrale de $$$\left(\frac{3}{4}\right)^{x^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(\frac{3}{4}\right)^{x^{2}}\, dx$$$.
Solution
Changer de base:
$${\color{red}{\int{\left(\frac{3}{4}\right)^{x^{2}} d x}}} = {\color{red}{\int{e^{x^{2} \ln{\left(\frac{3}{4} \right)}} d x}}}$$
Soit $$$u=x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}$$$.
Alors $$$du=\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}\right)^{\prime }dx = \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$$.
Par conséquent,
$${\color{red}{\int{e^{x^{2} \ln{\left(\frac{3}{4} \right)}} d x}}} = {\color{red}{\int{\frac{e^{- u^{2}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$$ et $$$f{\left(u \right)} = e^{- u^{2}}$$$ :
$${\color{red}{\int{\frac{e^{- u^{2}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} d u}}} = {\color{red}{\frac{\int{e^{- u^{2}} d u}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}}}$$
Cette intégrale (Fonction d'erreur) n’admet pas de forme fermée :
$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$
Rappelons que $$$u=x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}$$$ :
$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$
Par conséquent,
$$\int{\left(\frac{3}{4}\right)^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}$$
Ajouter la constante d'intégration :
$$\int{\left(\frac{3}{4}\right)^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}} \right)}}{2 \sqrt{- \ln{\left(3 \right)} + 2 \ln{\left(2 \right)}}}+C$$
Réponse
$$$\int \left(\frac{3}{4}\right)^{x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)} \right)}}{2 \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}} + C$$$A