Intégrale de $$$\left(1 - x\right)^{2}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(1 - x\right)^{2}\, dx$$$.
Solution
Soit $$$u=1 - x$$$.
Alors $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = - du$$$.
Ainsi,
$${\color{red}{\int{\left(1 - x\right)^{2} d x}}} = {\color{red}{\int{\left(- u^{2}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = u^{2}$$$ :
$${\color{red}{\int{\left(- u^{2}\right)d u}}} = {\color{red}{\left(- \int{u^{2} d u}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Rappelons que $$$u=1 - x$$$ :
$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\left(1 - x\right)}}^{3}}{3}$$
Par conséquent,
$$\int{\left(1 - x\right)^{2} d x} = - \frac{\left(1 - x\right)^{3}}{3}$$
Simplifier:
$$\int{\left(1 - x\right)^{2} d x} = \frac{\left(x - 1\right)^{3}}{3}$$
Ajouter la constante d'intégration :
$$\int{\left(1 - x\right)^{2} d x} = \frac{\left(x - 1\right)^{3}}{3}+C$$
Réponse
$$$\int \left(1 - x\right)^{2}\, dx = \frac{\left(x - 1\right)^{3}}{3} + C$$$A