Intégrale de $$$1 - \frac{\cos{\left(2 x \right)}}{2}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(1 - \frac{\cos{\left(2 x \right)}}{2}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(1 - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{\cos{\left(2 x \right)}}{2} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=1$$$:
$$- \int{\frac{\cos{\left(2 x \right)}}{2} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{\cos{\left(2 x \right)}}{2} d x} + {\color{red}{x}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ :
$$x - {\color{red}{\int{\frac{\cos{\left(2 x \right)}}{2} d x}}} = x - {\color{red}{\left(\frac{\int{\cos{\left(2 x \right)} d x}}{2}\right)}}$$
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
L’intégrale peut être réécrite sous la forme
$$x - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = x - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$x - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = x - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$x - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = x - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Rappelons que $$$u=2 x$$$ :
$$x - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = x - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Par conséquent,
$$\int{\left(1 - \frac{\cos{\left(2 x \right)}}{2}\right)d x} = x - \frac{\sin{\left(2 x \right)}}{4}$$
Ajouter la constante d'intégration :
$$\int{\left(1 - \frac{\cos{\left(2 x \right)}}{2}\right)d x} = x - \frac{\sin{\left(2 x \right)}}{4}+C$$
Réponse
$$$\int \left(1 - \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = \left(x - \frac{\sin{\left(2 x \right)}}{4}\right) + C$$$A