Intégrale de $$$\frac{1}{x \ln^{2}\left(x\right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{x \ln^{2}\left(x\right)}\, dx$$$.
Solution
Soit $$$u=\ln{\left(x \right)}$$$.
Alors $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{x} = du$$$.
Ainsi,
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{2}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-2$$$ :
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
Rappelons que $$$u=\ln{\left(x \right)}$$$ :
$$- {\color{red}{u}}^{-1} = - {\color{red}{\ln{\left(x \right)}}}^{-1}$$
Par conséquent,
$$\int{\frac{1}{x \ln{\left(x \right)}^{2}} d x} = - \frac{1}{\ln{\left(x \right)}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{x \ln{\left(x \right)}^{2}} d x} = - \frac{1}{\ln{\left(x \right)}}+C$$
Réponse
$$$\int \frac{1}{x \ln^{2}\left(x\right)}\, dx = - \frac{1}{\ln\left(x\right)} + C$$$A