Intégrale de $$$\frac{x^{6} - 1}{x^{2} + 1}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{x^{6} - 1}{x^{2} + 1}\, dx$$$.
Solution
Puisque le degré du numérateur n’est pas inférieur à celui du dénominateur, effectuez la division euclidienne des polynômes (voir les étapes »):
$${\color{red}{\int{\frac{x^{6} - 1}{x^{2} + 1} d x}}} = {\color{red}{\int{\left(x^{4} - x^{2} + 1 - \frac{2}{x^{2} + 1}\right)d x}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(x^{4} - x^{2} + 1 - \frac{2}{x^{2} + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=1$$$:
$$- \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{x}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=4$$$ :
$$x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\int{x^{4} d x}}}=x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\int{x^{2} d x}}}=\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$ :
$$\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - {\color{red}{\int{\frac{2}{x^{2} + 1} d x}}} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - {\color{red}{\left(2 \int{\frac{1}{x^{2} + 1} d x}\right)}}$$
L’intégrale de $$$\frac{1}{x^{2} + 1}$$$ est $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$ :
$$\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Par conséquent,
$$\int{\frac{x^{6} - 1}{x^{2} + 1} d x} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{x^{6} - 1}{x^{2} + 1} d x} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}+C$$
Réponse
$$$\int \frac{x^{6} - 1}{x^{2} + 1}\, dx = \left(\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A