Intégrale de $$$\frac{2 - x}{1 - x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{2 - x}{1 - x}\, dx$$$.
Solution
Soit $$$u=1 - x$$$.
Alors $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = - du$$$.
L’intégrale devient
$${\color{red}{\int{\frac{2 - x}{1 - x} d x}}} = {\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \frac{u + 1}{u}$$$ :
$${\color{red}{\int{\left(- \frac{u + 1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{u + 1}{u} d u}\right)}}$$
Expand the expression:
$$- {\color{red}{\int{\frac{u + 1}{u} d u}}} = - {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}}$$
Intégrez terme à terme:
$$- {\color{red}{\int{\left(1 + \frac{1}{u}\right)d u}}} = - {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u} d u}\right)}}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$- \int{\frac{1}{u} d u} - {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u} d u} - {\color{red}{u}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- u - {\color{red}{\int{\frac{1}{u} d u}}} = - u - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=1 - x$$$ :
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - {\color{red}{u}} = - \ln{\left(\left|{{\color{red}{\left(1 - x\right)}}}\right| \right)} - {\color{red}{\left(1 - x\right)}}$$
Par conséquent,
$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)} - 1$$
Ajoutez la constante d'intégration (et supprimez la constante de l'expression) :
$$\int{\frac{2 - x}{1 - x} d x} = x - \ln{\left(\left|{x - 1}\right| \right)}+C$$
Réponse
$$$\int \frac{2 - x}{1 - x}\, dx = \left(x - \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A