Intégrale de $$$\frac{1 - x}{x + 1}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1 - x}{x + 1}\, dx$$$.
Solution
Soit $$$u=x + 1$$$.
Alors $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\frac{1 - x}{x + 1} d x}}} = {\color{red}{\int{\frac{2 - u}{u} d u}}}$$
Expand the expression:
$${\color{red}{\int{\frac{2 - u}{u} d u}}} = {\color{red}{\int{\left(-1 + \frac{2}{u}\right)d u}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(-1 + \frac{2}{u}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{\frac{2}{u} d u}\right)}}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$\int{\frac{2}{u} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{2}{u} d u} - {\color{red}{u}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=2$$$ et $$$f{\left(u \right)} = \frac{1}{u}$$$ :
$$- u + {\color{red}{\int{\frac{2}{u} d u}}} = - u + {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- u + 2 {\color{red}{\int{\frac{1}{u} d u}}} = - u + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=x + 1$$$ :
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - {\color{red}{u}} = 2 \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)} - {\color{red}{\left(x + 1\right)}}$$
Par conséquent,
$$\int{\frac{1 - x}{x + 1} d x} = - x + 2 \ln{\left(\left|{x + 1}\right| \right)} - 1$$
Ajoutez la constante d'intégration (et supprimez la constante de l'expression) :
$$\int{\frac{1 - x}{x + 1} d x} = - x + 2 \ln{\left(\left|{x + 1}\right| \right)}+C$$
Réponse
$$$\int \frac{1 - x}{x + 1}\, dx = \left(- x + 2 \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A